Molding Simulation: Theory and Practice, 2e

Copyright: June 2022
ISBN: 9781569908846
Hardcover: 604 pages
$199.99 (US)

Related Books

Contents:

Overview of Plastics Molding
Material Properties of Plastics
Part and Mold Design
Process Conditions
Molding Simulation Methodology
Flow Consideration versus Part Features
Runner and Gate Design
Cooling Optimization
Warpage Control
Fiber Orientation Control
Hot Runner Optimization
Co-/Bi-Injection Molding
Gas-/Water-Assisted Injection Molding
Foam Injection Molding
Powder Injection Molding
Resin Transfer Molding
Integrated Circuit Packaging

Description:

This practical introductory guide to injection molding simulation is aimed at both practicing engineers and students. It will help the reader to innovate and improve part design and molding processes, essential for efficient manufacturing.

 
A user-friendly, case-study-based approach is applied, enhanced by many illustrations in full color. The book is conceptually divided into three parts:
 
Chapters 1–5 introduce the fundamentals of injection molding, focusing the factors governing molding quality and how molding simulation methodology is developed. As they are essential to molding quality, the rheological, thermodynamic, thermal, mechanical, kinetic properties of plastics are fully elaborated in this part, as well as curing kinetics for thermoset plastics.
 
Chapters 6–11 introduce CAE verification of design, a valuable tool for both part and mold designers toward avoiding molding problems in the design stage and to solve issues encountered in injection molding. This part covers design guidelines of part, gating, runner, and cooling channel systems. Temperature control in hot runner systems, prediction and control of warpage, and fiber orientation are also discussed.
 
Chapters 12–17 introduce research and development in innovative molding, illustrating how CAE is applied to advanced molding techniques, including co-/bi-Injection molding, gas-/water-assisted injection molding, foam injection molding, powder injection molding, resin transfer molding, and integrated circuit packaging.
 
The authors come from the creative simulation team at CoreTech System (Moldex3D), winner of the PPS James L. White Innovation Award 2015. Several CAE case study exercises for execution in the Moldex3D software are included to allow readers to practice what they have learned and test their understanding.
 
In the 2nd edition, the concept of Cyber-Physical Systems (CPS) in injection molding is introduced. In order to integrate molding simulation and injection machines, the workflow of machine response characterization is illustrated. By taking into account the real-world machine response, users can more accurately reflect the real-world manufacturing conditions in simulations. The optimized processing conditions obtained from the simulation can then be directly applied on the shop floor, bridging the gap between simulation and manufacturing. In addition, a new flow-fiber coupling model, i.e., the informed-isotropic (IISO) viscosity developed by Dr. Favaloro and Prof. Pipes of Purdue University, to simulate the anisotropic flow for fiber-reinforced thermoplastics is introduced. The IISO coupling is available to simulate some peculiar, irregular filling patterns for fiber-reinforced melts at high fiber concentrations: the free surface advances faster along the side cavity walls.

Author Info:

Chang, R.

Rong-Yeu Chang is CEO of CoreTech System Co., Ltd. (Moldex 3D), which he co-founded in 1995. From 1983 to 2015 he was Associate Professor/Professor, Department of Chemical Engineering, National Tsing-Hua University, Taiwan, where he had obtained his PhD. He is a Fellow of the Society of Plastics Engineers.

Hsu, C.

Chia-Hsiang (David) Hsu is President of Product and co-founder of CoreTech System Co., Ltd. (Moldex3D); previously (1999-2015) he was Director of Research and Development Division/Vice President. He holds a PhD from National Tsing-Hua University, Taiwan.

Wang, M.

Maw-Ling Wang is a consultant for CoreTech System Co., Ltd. (Moldex 3D) and an Honorary Professor at National Chung Cheng University, Taiwan. From 2003 to 2014 he was Chair Professor, Dean, and Academic Vice President at Hungkuang University, Taiwan. He holds a PhD in Chemical Engineering from Clarkson University, Potsdam, U.S.A. and was previously a consultant at Sachem, Inc., TX.