Sample Pages

Susan E.M. Selke, John D. Culter

Plastics Packaging
Properties, Processing, Applications, and Regulations

Book ISBN: 978-3-446-40790-9
eBook ISBN: 978-3-446-43719-7

For further information and order see

www.hanserpublications.com (in the Americas)

www.hanser-fachbuch.de (outside the Americas)
Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>V</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Historic Note</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Role of Plastics in Packaging</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Book Structure</td>
<td>6</td>
</tr>
<tr>
<td>1.4 References</td>
<td>7</td>
</tr>
<tr>
<td>2. Basic Concepts and Definitions</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Terminology</td>
<td>9</td>
</tr>
<tr>
<td>2.1.1 Macromolecule</td>
<td>9</td>
</tr>
<tr>
<td>2.1.2 Polymer</td>
<td>10</td>
</tr>
<tr>
<td>2.1.3 Plastic</td>
<td>11</td>
</tr>
<tr>
<td>2.1.4 Monomer</td>
<td>12</td>
</tr>
<tr>
<td>2.1.5 Constitutional Unit</td>
<td>12</td>
</tr>
<tr>
<td>2.1.6 Homopolymer</td>
<td>13</td>
</tr>
<tr>
<td>2.1.7 Copolymer</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Polymer Nomenclature</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Interatomic and Intermolecular Forces in Polymers</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1 Interatomic Forces</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1.1 Covalent Bonds</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1.2 Ionic Bonds</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2 Intermolecular and Intramolecular Forces</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2.1 Dispersion Forces</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.2 Induction Forces</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.3 Dipole Forces</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.4 Hydrogen Bonds</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Properties Determined by Chemical Composition</td>
<td>19</td>
</tr>
</tbody>
</table>
Content

2.5 Categorization of Plastics .. 20
2.6 References .. 20
Study Questions .. 21

3 Polymer Structure and Properties ... 23
3.1 Introduction ... 23
3.2 Molecular Architecture .. 23
 3.2.1 Linear Polymers ... 24
 3.2.2 Branched Polymers ... 24
 3.2.3 Cross-Linked Polymers ... 26
3.3 Copolymer Structure .. 27
 3.3.1 Random Copolymers .. 27
 3.3.2 Alternating Copolymers ... 28
 3.3.3 Block Copolymers ... 28
 3.3.4 Graft Copolymers ... 30
 3.3.5 Combinations of Copolymer Types 31
3.4 Chain Polymerization, Addition Polymers 31
 3.4.1 Addition or Chain Polymerization Mechanism 32
 3.4.2 Vinyl Polymers .. 33
 3.4.3 Free-Radical Polymerization ... 35
 3.4.3.1 Initiation ... 35
 3.4.3.2 Propagation .. 35
 3.4.3.3 Termination .. 36
 3.4.4 Polyethylene Polymerization Processes 36
 3.4.5 Other Addition Polymerization Mechanisms 40
3.5 Molecular Configuration and Conformation 40
3.6 Head-to-Head and Head-to-Tail .. 41
 3.6.1 Configurations of Vinyl Polymers 41
3.7 Stereochemistry ... 42
3.8 Step Polymerization, Condensation Polymers 45
3.9 Molecular Weight and Molecular Weight Distribution 49
 3.9.1 Degree of Polymerization .. 49
 3.9.2 Molecular Mass (Weight) and Molecular Weight Distribution 50
 3.9.3 Number Average Molecular Weight 51
 3.9.4 Weight Average Molecular Weight 51
 3.9.5 Other Molecular Weight Averages 54
 3.9.6 Determination of MWD ... 55
 3.9.7 Effect of Molecular Weight and Molecular Weight Distribution on Flow and Mechanical Properties 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>Polymer Morphology</td>
<td>59</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Crystallinity</td>
<td>59</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Polymer Orientation</td>
<td>65</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Degree of Crystallinity</td>
<td>66</td>
</tr>
<tr>
<td>3.11</td>
<td>Thermal Properties</td>
<td>68</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Melting Temperature</td>
<td>68</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Glass Transition Temperature</td>
<td>69</td>
</tr>
<tr>
<td>3.11.2.1</td>
<td>Measuring T_g</td>
<td>72</td>
</tr>
<tr>
<td>3.11.2.2</td>
<td>Variables Affecting T_g</td>
<td>72</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Other Thermal Transitions</td>
<td>74</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Heat Capacity</td>
<td>75</td>
</tr>
<tr>
<td>3.11.5</td>
<td>Heat of Fusion</td>
<td>75</td>
</tr>
<tr>
<td>3.11.6</td>
<td>Thermal Conductivity</td>
<td>76</td>
</tr>
<tr>
<td>3.11.7</td>
<td>Thermal Expansion Coefficient</td>
<td>76</td>
</tr>
<tr>
<td>3.11.8</td>
<td>Other Dimensional Changes</td>
<td>77</td>
</tr>
<tr>
<td>3.11.9</td>
<td>Dimensional Stability</td>
<td>78</td>
</tr>
<tr>
<td>3.12</td>
<td>Mechanical Properties</td>
<td>78</td>
</tr>
<tr>
<td>3.12.1</td>
<td>Tensile Properties</td>
<td>78</td>
</tr>
<tr>
<td>3.12.2</td>
<td>Tear Strength</td>
<td>87</td>
</tr>
<tr>
<td>3.12.3</td>
<td>Impact and Bursting Strength</td>
<td>87</td>
</tr>
<tr>
<td>3.12.4</td>
<td>Other Mechanical Properties</td>
<td>88</td>
</tr>
<tr>
<td>3.13</td>
<td>Barrier Properties</td>
<td>89</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Diffusion Coefficient</td>
<td>89</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Solubility Coefficient</td>
<td>90</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Permeability Coefficient</td>
<td>90</td>
</tr>
<tr>
<td>3.14</td>
<td>Surfaces and Adhesion</td>
<td>90</td>
</tr>
<tr>
<td>3.14.1</td>
<td>Surface Tension</td>
<td>90</td>
</tr>
<tr>
<td>3.14.2</td>
<td>Wettability</td>
<td>91</td>
</tr>
<tr>
<td>3.14.3</td>
<td>Adhesive Bond Strength</td>
<td>91</td>
</tr>
<tr>
<td>3.14.4</td>
<td>Cohesive Bond Strength</td>
<td>91</td>
</tr>
<tr>
<td>3.14.5</td>
<td>Blocking</td>
<td>92</td>
</tr>
<tr>
<td>3.14.6</td>
<td>Friction</td>
<td>92</td>
</tr>
<tr>
<td>3.14.7</td>
<td>Heat Sealing</td>
<td>93</td>
</tr>
<tr>
<td>3.15</td>
<td>Optical Characteristics</td>
<td>93</td>
</tr>
<tr>
<td>3.15.1</td>
<td>Gloss</td>
<td>94</td>
</tr>
<tr>
<td>3.15.2</td>
<td>Haze</td>
<td>94</td>
</tr>
<tr>
<td>3.15.3</td>
<td>Transparency and Opacity</td>
<td>95</td>
</tr>
<tr>
<td>3.16</td>
<td>Electrical Properties</td>
<td>95</td>
</tr>
<tr>
<td>3.17</td>
<td>Plastics Identification Using IR Spectrophotometry</td>
<td>96</td>
</tr>
<tr>
<td>3.18</td>
<td>References</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Study Questions</td>
<td>98</td>
</tr>
</tbody>
</table>
4 Major Plastics in Packaging .. 101
 4.1 Branched Polyethylenes ... 101
 4.1.1 Low Density Polyethylene 102
 4.1.2 Ethylene Vinyl Acetate (EVA) 104
 4.1.3 Ethylene Acrylic Acid (EAA) 105
 4.1.4 Ionomers ... 106
 4.2 Linear Polyethylenes .. 107
 4.2.1 High Density Polyethylene (HDPE) 108
 4.2.2 Linear Low Density Polyethylene (LLDPE) 110
 4.2.3 Metalloocene Polymers ... 111
 4.2.4 Property Trends in the Polyethylene Family 114
 4.3 Polypropylene (PP) .. 116
 4.3.1 PP Homopolymer ... 116
 4.3.2 Random Copolymer Polypropylene 118
 4.4 Polyvinyl Chloride (PVC) ... 118
 4.5 Vinlylidene Chloride Copolymers (PVDC) 121
 4.6 Polystyrene (PS) .. 123
 4.7 Polyvinyl Alcohol (PVOH) and Ethylene Vinyl Alcohol (EVOH) .. 124
 4.7.1 Polyvinyl Alcohol ... 124
 4.7.2 Ethylene Vinyl Alcohol 125
 4.8 Nylon ... 127
 4.9 Polyester .. 130
 4.9.1 Polyethylene Terephthalate (PET) 130
 4.9.2 Glycol Modified PET, Other PET Copolymers, and PET Blends 132
 4.9.3 Polyethylene Naphthalate (PEN) 133
 4.10 Polycarbonate (PC) .. 134
 4.11 Fluoropolymers .. 135
 4.12 Styrene-Butadiene Copolymers 136
 4.13 Acrylonitrile Copolymers ... 137
 4.14 Cyclic Olefin Copolymers ... 138
 4.15 Liquid Crystal Polymers .. 138
 4.16 Conductive Polymers ... 139
 4.17 Thermoplastic Elastomers .. 140
 4.18 Biobased Plastics .. 141
 4.18.1 Cellophane .. 142
 4.18.2 Cellulosic Plastics .. 144
 4.18.3 Starch-Based Plastics 144
4.18.4 Poly(lactic acid), PLA .. 145
4.18.5 Polyhydroxyalkanoates .. 147
4.18.6 Biobased Polyolefins .. 148
4.18.7 Biobased PET ... 149
4.18.8 Other Biobased Plastics .. 149

4.19 Thermosets ... 150
4.20 Polymer Blends ... 152
4.21 Comparison Chart of Major Plastics 154
4.22 References ... 155

Study Questions ... 156

5 Additives and Compounding .. 159
5.1 Introduction ... 159
5.2 Compounding .. 160
5.3 Antioxidants ... 163
5.4 Heat Stabilizers ... 166
5.5 UV Stabilizers ... 167
5.6 Additives to Modify Surface Attractions 168
 5.6.1 Antiblocking Agents .. 169
 5.6.2 Slip Agents ... 169
 5.6.3 Antislip Agents .. 170
 5.6.4 Lubricants ... 170
 5.6.5 Mold Release Agents ... 171
5.7 Colorants .. 171
 5.7.1 Dyes ... 172
 5.7.2 Organic Pigments ... 172
 5.7.3 Inorganic Pigments ... 173
 5.7.4 Specialty Pigments .. 173
 5.7.5 Colorants and the FDA .. 173
5.8 Antifogging Agents ... 174
5.9 Nucleating Agents .. 175
5.10 Antistatic Agents .. 176
5.11 Plasticizers ... 177
5.12 Oxygen Scavengers, Desiccants, and Fragrance Enhancers 178
5.13 Fillers and Reinforcements .. 181
5.14 Antimicrobials or Biocides .. 182
5.15 Nanoclays and Related Additives ... 182
5.16 Other Additives .. 183
Study Questions .. 184

6 Adhesion, Adhesives, and Heat Sealing 185
6.1 Adhesion .. 185
6.2 Adhesives ... 186
6.3 Adhesive and Cohesive Bond Strength 187
 6.3.1 Adhesive Bond Strength 188
 6.3.1.1 Surface Tension 188
 6.3.1.2 Solubility Parameter 189
 6.3.1.3 Viscosity .. 191
 6.3.1.4 Estimation of Adhesive Bond Strength 192
 6.3.2 Cohesive Bond Strength 193
6.4 Types of Adhesives ... 194
 6.4.1 Reactive Adhesives 194
 6.4.2 Hot Melt Adhesives 195
 6.4.3 Solvent-Borne Adhesives 195
 6.4.4 Water-Borne Adhesives 196
 6.4.5 Pressure Sensitive and Remoistenable Adhesives 197
 6.4.6 Cold-Seal Adhesives 198
 6.4.7 UV- and E-Beam Curing 198
6.5 Application of Adhesives 198
6.6 Adhesive Terminology .. 200
6.7 Adhesive Additives ... 201
6.8 Heat Sealing ... 202
 6.8.1 Sealing Methods ... 203
 6.8.1.1 Bar or Thermal Sealing 203
 6.8.1.2 Impulse Sealing 204
 6.8.1.3 Band Sealing 204
 6.8.1.4 Hot Wire or Hot Knife Sealing 205
 6.8.1.5 Ultrasonic Sealing 205
 6.8.1.6 Friction Sealing 205
 6.8.1.7 Hot Gas Sealing and Contact Sealing 206
 6.8.1.8 Radiant Sealing 206
 6.8.1.9 Dielectric Sealing 206
 6.8.1.10 Magnetic Sealing 206
 6.8.1.11 Induction Sealing 207
 6.8.1.12 Solvent Sealing 207
 6.8.2 Heat Conduction in Multilayer Flexible Materials 208
 6.8.3 Hot Tack .. 209
7.6 Surface Treatment ... 241
7.7 Yield of Film ... 242
7.8 Testing and Evaluation of Films 243
7.9 References .. 244
Study Questions ... 244

8 Converting, Lamination and Coating 245
8.1 Extrusion Coating and Laminating 245
8.2 Hot Melt Lamination or Coating 248
8.3 Adhesive Lamination 249
8.4 Thermal Laminating 251
8.5 Metallized Film ... 251
8.6 Silicon Oxide Films 252
8.7 Other Inorganic Barrier Coatings 253
8.8 Building Multilayer Structures 254
8.9 References .. 255
Study Questions ... 255

9 Flexible Packaging .. 257
9.1 Characteristics of Flexible Packaging 257
9.2 Pouch Styles ... 258
 9.2.1 Pillow Pouches 258
 9.2.2 Three-Side Seal Pouches 259
 9.2.3 Four-Side Seal Pouches 259
 9.2.4 Stand-Up Pouches 260
9.3 Forming Pouches ... 261
9.4 Retort Pouches .. 263
9.5 Bulk and Heavy-Duty Bags 264
9.6 Bag-in-Box .. 265
9.7 References .. 266
Study Questions ... 266

10 Thermoforming .. 267
10.1 Introduction ... 267
10.2 Heating the Sheet 268
10.2.1 Temperature Selection .. 268
10.2.2 Radiative Heating .. 268
10.3 Forming the Sheet .. 270
10.3.1 Basic Methods ... 270
10.3.1.1 Drape Forming .. 270
10.3.1.2 Vacuum Forming ... 271
10.3.1.3 Pressure Forming .. 271
10.3.2 Sheet Deformation .. 272
10.3.3 Thermoforming Variations .. 273
10.3.3.1 Plug-Assist Thermoforming ... 273
10.3.3.2 Solid Phase Pressure Forming ... 274
10.3.3.3 Bubble or Billow Forming .. 274
10.3.3.4 Vacuum Snap-Back Thermoforming 275
10.3.3.5 Matched Mold Forming ... 276
10.3.3.6 Scrapless Thermoforming ... 276
10.3.3.7 In-Line Thermoforming and Melt-to-Mold Thermoforming 277
10.3.3.8 Twin-Sheet Thermoforming .. 278
10.3.3.9 Skin Packaging ... 278
10.3.4 Selection of Thermoforming Method 279
10.4 Trimming the Sheet ... 279
10.5 Part and Mold Design .. 279
10.5.1 Prototype Molds ... 281
10.5.2 Production Molds ... 283
10.6 Thermoform-Fill-Seal Systems ... 284
10.7 References .. 284

Study Questions ... 284

11 Injection Molding, Closures, Rotational Molding, Compression Molding, and Tubes 287
11.1 Injection Molding ... 287
11.1.1 Injection Molding Machines ... 287
11.1.2 Injection Mold Units ... 288
11.1.3 Polymer Flow ... 289
11.1.4 Removal of Molded Parts .. 292
11.1.5 Hot Runner Molds .. 293
11.1.6 Venting .. 293
11.1.7 Applications of Injection Molding 294
11.2 Closures .. 294
11.2.1 Friction Closures .. 295
11.2.2 Snap-Fit Closures ... 295
11.2.3 Threaded Closures ... 296
11.2.4 Specialty Closures ... 298
11.2.5 Fitments and Overcaps 299
11.3 Rotational Molding ... 299
11.4 Compression Molding ... 300
11.5 Plastic Tubes ... 301
11.6 References ... 302

12 Blow Molding and Bottles 303
12.1 Blow Molding ... 303
12.2 Extrusion Blow Molding .. 304
 12.2.1 Basic Extrusion Blow Molding Process 304
 12.2.2 Parison Dimensions .. 306
 12.2.3 Extrusion Blow Molding Variations 307
 12.2.4 Container Designs ... 307
 12.2.5 Die Shaping ... 308
 12.2.6 Programmed Parison 309
 12.2.7 Coextruded Bottles .. 310
12.3 Injection Blow Molding ... 312
 12.3.1 IBM Process .. 312
 12.3.2 Preform Design Process 314
 12.3.3 Comparison of Injection and Extrusion Blow Molding 317
12.4 Stretch Blow Molding ... 317
 12.4.1 Plastic Soft Drink Bottles 317
 12.4.2 Overview of Stretch Blow Molding 318
 12.4.3 Manufacture of PET Preforms 320
 12.4.4 Bottle Blowing .. 323
 12.4.4.1 Preform Heating 324
 12.4.4.2 Blowing the Bottles 325
12.5 Hot-Fill Bottles .. 326
12.6 Coinjection Blow Molded Bottles 329
12.7 Foam Blow Molding .. 331
12.8 Blow Molds .. 332
12.9 In-Mold Labeling ... 333
12.10 Aseptic Blow Molding .. 333
12.11 Surface Treatment ... 334

Study Questions ... 302
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.11.1</td>
<td>Flame Treatment</td>
<td>334</td>
</tr>
<tr>
<td>12.11.2</td>
<td>Coatings</td>
<td>334</td>
</tr>
<tr>
<td>12.11.3</td>
<td>Fluorination</td>
<td>335</td>
</tr>
<tr>
<td>12.11.4</td>
<td>Sulfonation</td>
<td>336</td>
</tr>
<tr>
<td>12.12</td>
<td>Dimensions and Tolerances for Plastic Bottles</td>
<td>336</td>
</tr>
<tr>
<td>12.13</td>
<td>References</td>
<td>337</td>
</tr>
<tr>
<td>13</td>
<td>Foams, Cushioning, and Distribution Packaging</td>
<td>339</td>
</tr>
<tr>
<td>13.1</td>
<td>Foams</td>
<td>339</td>
</tr>
<tr>
<td>13.1.1</td>
<td>Polystyrene Foam</td>
<td>340</td>
</tr>
<tr>
<td>13.1.1.1</td>
<td>Expanded Polystyrene Foam</td>
<td>340</td>
</tr>
<tr>
<td>13.1.1.2</td>
<td>Extruded Polystyrene Foam</td>
<td>341</td>
</tr>
<tr>
<td>13.1.1.3</td>
<td>Styrene Copolymer Foams</td>
<td>342</td>
</tr>
<tr>
<td>13.1.2</td>
<td>Polyolefin Foams</td>
<td>342</td>
</tr>
<tr>
<td>13.1.3</td>
<td>Polyurethane Foams and Foam-in-Place Systems</td>
<td>343</td>
</tr>
<tr>
<td>13.1.4</td>
<td>Starch-Based Foams</td>
<td>344</td>
</tr>
<tr>
<td>13.2</td>
<td>Nonfoam Plastic Cushioning Systems</td>
<td>344</td>
</tr>
<tr>
<td>13.3</td>
<td>Cushioning</td>
<td>345</td>
</tr>
<tr>
<td>13.4</td>
<td>Thermal Insulation Using Foams</td>
<td>347</td>
</tr>
<tr>
<td>13.5</td>
<td>Plastic Pallets</td>
<td>349</td>
</tr>
<tr>
<td>13.6</td>
<td>Plastic Drums and Other Shipping Containers</td>
<td>349</td>
</tr>
<tr>
<td>13.7</td>
<td>Packaging for Electrostatic Discharge Protection</td>
<td>351</td>
</tr>
<tr>
<td>13.8</td>
<td>References</td>
<td>351</td>
</tr>
<tr>
<td>14</td>
<td>Study Questions</td>
<td>352</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction</td>
<td>353</td>
</tr>
<tr>
<td>14.2</td>
<td>Physical and Chemical Basis for Interactions</td>
<td>354</td>
</tr>
<tr>
<td>14.3</td>
<td>Types of Interactions</td>
<td>355</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Permeation</td>
<td>356</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Migration</td>
<td>356</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Sorption</td>
<td>357</td>
</tr>
<tr>
<td>14.4</td>
<td>Thermodynamic Equilibrium</td>
<td>358</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Gas Phase Chemical Activity</td>
<td>359</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Solubility</td>
<td>360</td>
</tr>
<tr>
<td>14.4.3</td>
<td>Partition Coefficient</td>
<td>361</td>
</tr>
</tbody>
</table>
14.5 Diffusion ... 362
14.6 Steady State Diffusion Across a Single Sheet: Permeability 363
14.7 Variables Affecting Permeability 368
 14.7.1 Chemical Structure of the Polymer 368
 14.7.2 Chemical Structure of the Permeant Molecule 369
 14.7.3 Effect of Temperature .. 371
 14.7.4 Effect of Humidity ... 374
 14.7.5 Physical Structure of the Polymer 375
 14.7.6 Effect of Permeant Concentration 377
14.8 Experimental Determination of Permeability 377
14.9 Multilayer Structures .. 380
14.10 Applications of the Permeability Equation 382
14.11 Shelf Life Estimation .. 384
14.12 References .. 390
 Study Questions .. 391

15 U.S. Regulations and Plastic Packaging 395
15.1 Introduction .. 395
15.2 The U.S. Federal Food, Drug, and Cosmetic Act 395
15.3 Medical Packaging Regulations 396
 15.3.1 Drug Packaging ... 396
 15.3.2 Medical Device Packaging ... 397
15.4 Food Packaging Regulations .. 398
 15.4.1 What is a Food Additive? .. 398
 15.4.1.1 Example 1: Information on Nylon Available in the CFR 400
 15.4.1.2 Example 2: Identification of Relevant Regulations for Fabrication of an Adhesive-Laminated Plastic Bag 400
 15.4.2 Acceptable Amounts of Migration 401
 15.4.3 Threshold of Regulation ... 402
 15.4.4 Food Processing Equipment and the Housewares Exclusion . 403
 15.4.5 Determining the Conditions of Use 404
 15.4.6 Multilayer Food Packages ... 404
 15.4.7 GRAS and Prior-Sanctioned Additives 405
 15.4.8 Use of Recycled Plastics for Food Packaging 406
 15.4.9 Role of Manufacturers and Users in Determining FDA Compliance ... 408
15.5 Cosmetic Packaging Regulations .. 409
15.6 State Laws and Regulations .. 409
 15.6.1 Degradable Beverage Carriers ... 409
 15.6.2 “Model Toxics” Legislation ... 410
 15.6.3 Resin Coding on Plastic Bottles 412
 15.6.4 Recycling Rate/Recycled Content Requirements 415
 15.6.4.1 Oregon ... 415
 15.6.4.2 California ... 415
 15.6.4.3 Wisconsin .. 416
15.7 Potential Future Issues ... 416
15.8 References ... 417
 Study Questions .. 418

16 Environmental Issues ... 419
16.1 Introduction ... 419
16.2 Solid Waste Concerns ... 420
16.3 Source Reduction and Reuse .. 425
16.4 Recycling of Plastic Packaging .. 425
 16.4.1 Collection of Packaging Materials for Recycling 427
 16.4.2 Recycling Rates for Plastics Packaging 429
 16.4.3 Processing of Collected Plastics 430
 16.4.3.1 Size Reduction ... 430
 16.4.3.2 Cleaning ... 430
 16.4.3.3 Sorting ... 431
 16.4.3.4 Extrusion and Pelletizing 433
 16.4.4 Feedstock Recycling .. 433
16.5 PET Recycling .. 434
16.6 HDPE Recycling ... 435
16.7 LDPE Recycling ... 436
16.8 Recycling of PS, PP, PVC, and Other Plastics 438
16.9 Recycling of Commingled Plastics ... 439
16.10 Biodegradable Plastics ... 440
 16.10.1 PHAs .. 441
 16.10.2 Polylactides ... 441
 16.10.3 Other Polyesters ... 442
 16.10.4 Starch-Based Plastics .. 442
 16.10.5 Other Biodegradable Plastics .. 442
16.11 Other Environmental Concerns .. 443
 16.11.1 Resource Depletion and Energy Efficiency 443
 16.11.2 Pollution .. 444
 16.11.3 Climate Change .. 444
16.12 Lifecycle Assessment .. 445
16.13 References ... 447
 Study Questions ... 448

Additional Reading ... 451

Index ... 455
This book is intended to provide a basic understanding of plastic packaging materials. It covers the properties of common packaging plastics, and relates these properties to the chemical structure of the polymers. Common processing methods for transforming plastic resins into packages are covered.

In this book we discuss the uses of plastics in packaging. Although this is not a course in chemistry nor in material science, we attempt to stress the relationship between chemical structure and packaging material properties. We expect the reader to have some knowledge of chemistry and physics. The major purpose of this book is to provide the students in the School of Packaging with reading material on plastics for packaging; however, we hope that it can also be useful to packaging professionals responsible for writing specifications, designing, fabricating, testing, and controlling the quality of plastic materials. We also hope to trigger the readers' curiosity to pursue further studies in the exciting world of packaging materials.

This third edition fixes some of the errors that, despite our best efforts, found their way into the previous editions. Unfortunately, we're sure that we have still not found them all! We have expanded and updated the discussion of biobased plastics such as PLA and PHA, plastics recycling, life cycle assessment, and a variety of other topics.

We have deliberately included some information that goes well beyond what would normally be included in an introductory level packaging course, in order that it will be available for the more advanced student and for the practitioner. The “Study Questions” at the end of each chapter are intended to serve as review of the main concepts, and also to stimulate thought about aspects of plastics that have not been thoroughly covered. Answers to quantitative questions are provided in parentheses after the question.
1.1 Historic Note

The first man-made plastic, a form of cellulose nitrate, was prepared in 1838 by A. Parker and shown at the Great International Exhibition in London in 1862. It was intended to be a replacement for natural materials such as ivory and was called parkesine. In 1840, Goodyear and Hancock developed the “vulcanization” procedure that eliminated tackiness and added elasticity to natural rubber. The change in the properties of the natural rubber was obtained by the addition of sulfur powder that produced additional chemical bonds in the bulk of the rubber.

In 1851, hard rubber, or ebonite, was commercialized. In 1870 a patent was issued to J. Hyatt, of New York, for celluloid, a type of cellulose nitrate with low nitrate content produced at high temperature and pressure. This was the first commercially available plastic and the only one until the development of Bakelite by Baekeland in 1907. Bakelite is the oldest of the purely synthetic plastics and consisted of a resin obtained by the reaction of phenol and formaldehyde.

The exact nature of plastics, rubber, and similar natural materials was not known until 1920, when H. Staudinger proposed a revolutionary idea: all plastics, rubber, and materials such as cellulose were polymers or macromolecules. Before Staudinger’s theory, the scientific community was very confused about the exact nature of plastics, rubbers, and other materials of very high molecular weight. To most research workers in the 19th century, the finding that some materials had a molecular weight in excess of 10,000 g/mol appeared to be untrustworthy. They confused such substances with colloidal systems consisting of stable suspensions of small molecules.

Staudinger rejected the idea that these substances were organic colloids. He hypothesized that the high molecular weight substances known as polymers were true macromolecules formed by covalent bonds. Staudinger's macromolecular theory stated that polymers consist of long chains in which the individual monomers (or building blocks) are connected with each other by normal covalent bonds. The
Introduction

unique polymer properties are a consequence of the high molecular weight and long chain nature of the macromolecule. While at first his hypothesis was not readily accepted by most scientists, it eventually became clear that this explanation permitted the rational interpretation of experiments and so gave to industrial chemists a firm guide for their work. An explosion in the number of polymers followed. Staudinger was awarded the Nobel Prize in 1953. It is well established now that plastics, as well as many other substances such as rubber, cellulose, and DNA, are macromolecules.

Since 1930, the growth in the number of polymers and their applications has been immense. During the 1930s, industrial chemical companies initiated fundamental research programs that had a tremendous impact on our society. For example, Wallace Carothers, working at DuPont de Nemours and Co., developed diverse polymeric materials of defined structures and investigated how the properties of these materials depend on their structure. In 1939 this program resulted in the commercialization of nylon.

A commercial process for the synthesis of polyethylene was successfully developed in the 1930s by ICI (Imperial Chemical Industries), in England. In 1955, K. Ziegler in Germany and J. Natta in Italy developed processes for making polyethylene at low pressure and temperature using special catalysts. They were awarded the Nobel Prize, Ziegler in 1964 and Natta in 1965, for their contributions in the development of new polymerization catalysts with unique stereo-regulating powers. Linear polyethylene produced using solution and gas technologies was introduced in the 1970s. The continuous development of new polymers resulted in additional breakthroughs in the mid-1980s and early 1990s. Single-site catalysts, which were originally discovered by Natta in the mid-1950s, were commercialized for syndiotactic polystyrene in 1954, polypropylene in 1984, and polyethylenes in the early 1990s. These catalysts permit much greater control over the molecular weight and architecture of polyolefins such as polyethylene and polypropylene. Table 1.1 shows the approximate introduction dates for some common plastics.
Today, dozens of different synthetic plastics are produced throughout the world by hundreds of companies. In 2012, world production of plastics totaled about 288 million metric tons [1]. U.S. resin production in 2013 was about 49 million metric tons (107 billion lbs) [2].

1.2 Role of Plastics in Packaging

The term plastics is used instead of polymer to indicate a specific category of high molecular weight materials that can be shaped using a combination of heat, pressure, and time. All plastics are polymers, but not all polymers are plastics. In this text, we will discuss the major plastics that are useful as packaging materials. To a limited extent, we will discuss cellophane, which is a wood-based material that is a polymer, but not a plastic. We will also discuss adhesives, which are polymers and may or may not be plastics, but which are very useful in the fabrication of plastic and other types of packaging.

Packaging started with natural materials such as leaves. From there, it progressed to fabricated materials such as woven containers and pottery. Glass and wood have
been used in packaging for about 5000 years. In 1823, Durand in England patented the “cannister,” the first tin-plate metal container. The double seamed three-piece can was in use by 1900. Paper and paperboard became important packaging materials around 1900. As soon as plastic materials were discovered, they were tried as packaging materials, mainly to replace paper packaging. Use of cellophane, which is a polymer but not truly a plastic, predated much of the use of plastics.

The use of plastics in packaging applications began, for the most part, after World War II. Polyethylene had been produced in large quantities during the war years, and it became commercially available immediately after the war. Its first application had been as insulation for wiring in radar and high frequency radio equipment. It was soon found that it could be formed easily into various shapes useful for packaging. An early application was in bread bags, replacing waxed paper. Polyethylene coatings replaced wax in heat-sealable paperboard. As a coating, it was also combined with paper to replace waxed paper and cellophane. The driving force behind the expansion of polyethylene use was to obtain a resealable package as well as a transparent material that allowed the product to be visible. Polyethylene remains the leading packaging plastic because of its low raw material price, versatile properties, and its ease of manufacture and fabrication.

The growth of plastics packaging has accelerated rapidly since the 1970s, in large part because of one of the main features of plastics—low density. This low density made the use of plastics attractive because of the weight savings, which translates into energy savings for transportation of packaged goods. In addition, plastic packages are usually thinner than their counterparts in glass, metal, paper, or paperboard. Therefore, conversion to plastic packaging often permits economies of space as well as of weight. Savings in the amount of distribution packaging needed may also result. Another important property is the relatively low melting temperatures of plastics compared to glass and metals. Lower melting temperatures mean less energy is required to produce and fabricate the materials and packages. While use of plastics in all applications has grown rapidly during this period, the growth in packaging has outpaced the growth in other sectors. Packaging is the largest single market for plastics. In 2013, packaging accounted for about 34% of the uses of the major thermoplastic resins in the U.S. (42% if exports were excluded) [3]. As shown in Fig. 1.1, packaging accounted for 39.4% of all plastics used in Europe in 2012 [4].
1.2 Role of Plastics in Packaging

Many of the early applications of plastics were in food packaging. The substitution of plastic films for paper in flexible packaging led to the development of many new combinations of materials, and to the use of several polymers together to gain the benefit of their various attributes. The development of flexible packaging for foods picked up speed in the late 1940s and 1950s as the prepared foods business began to emerge. Milk cartons using polyethylene coated paperboard were introduced in the 1950s. Here the driving force was economics: glass was more expensive in a systems sense, breakage of glass on line required extensive cleaning, and returnable bottles brought all sorts of foreign objects into an otherwise clean environment.

In industrial packaging, plastics were used early on as a part of multiwall shipping sacks that replaced bulk shipments, drums, and burlap sacks. Again, polyethylene film is the predominant material used. Cement in 110 kg (50 lb) bags became a major application of polyethylene film in the industrial sector. The polyethylene liner protects the cement from moisture that would cause it to solidify. Another large use of plastics in industrial packaging is as cushioning to protect goods from vibration and impact during shipping. Polystyrene, polyurethane and polyethylene foams, along with other polymers are used as cushioning, compete against paper-based cushioning materials.

Medical packaging has been another big user of plastics. As converting techniques improved, so that accurate molding of small vials could be accomplished at low cost, and as new polymers became available with the necessary characteristics, plastics have been substituted for glass in many applications. As medical procedures became more complex, more disposable kits were introduced, designed to have complete sets of equipment for specific procedures. These kits require special packaging to keep the parts organized and easily usable. Here thermoformed

Figure 1.1 Major markets for plastics in Europe, 2012 [4]
trays became standard, so that kits of pre-sterilized, disposable instruments and
supplies, in the proper varieties and amounts, can be readily assembled. Plastic
packaging allows the sterilization to occur after the package is sealed, thus
eliminating the possibility of recontamination after sterilization, as long as the
package remains intact. Sterilization with ethylene oxide is facilitated by the use of
spun-bonded polymeric fabrics. Radiation sterilization depends on the use of poly-
mers that retain their integrity after exposure to ionizing radiation.

The energy crisis in the 1970s, while at first leading to attacks on plastics as users
of precious petroleum, actually accelerated the movement to plastic packaging
because of the weight reduction possible. Many metal cans and glass bottles were
replaced by plastic cans and bottles, and in many cases changes in package design
moved the product out of rigid packaging altogether, into flexible packaging, which
more often than not was made of plastic. Similarly, some metal drums were re-
placed by plastic drums. A major driving force was to reduce the fuel used for
transportation of both packages and packaged goods by reducing the weight of the
package. One important example is the introduction of the plastic beverage bottle.

Environmental concerns of the 1980s and early 1990s, caused by littering issues
and a perceived lack of landfill space, caused a major rethinking of the plastic
packaging in use. Companies that used plastics had to defend the uses that were in
place and justify new applications. The result was a more responsible approach to
packaging in general by most companies. As politicians and the public became
more informed about the truth concerning plastics and the environment, the
issues receded from the forefront, although they have not disappeared altogether.
Today, plastic packaging has earned its position as one of the choices of the package
designer. Decisions about which material(s) should be used require consideration
of (1) product protection requirements, (2) market image, (3) cost, and (4) environ-
mental issues.

1.3 Book Structure

This book is intended to provide (1) an introduction to the plastics used in pack-
aging, (2) discussion of how their use relates to their properties, and (3) expla-
nation of how these properties relate to their chemical structure, along with (4) an
introduction to converting these plastic resins into useful packages. We have used
much of the material in this book in our undergraduate course on plastics packag-
ing at the School of Packaging, Michigan State University.

Chapter 2 provides some introductory concepts and definitions. Chapter 3 looks at
the relationship between the chemical and physical structure and the properties of
plastics. Chapter 4 provides a description of the plastics commonly used in packaging. Chapter 5 looks at the other ingredients that go into a plastic resin. Chapter 6 examines adhesion, adhesives, and heat sealing. Chapter 7 covers conversion of plastic resins into film and sheet forms. Chapter 8 examines how film and sheet can be modified by lamination and by coating. Chapter 9 discusses flexible packaging and Chapter 10 covers thermoforming. Chapter 11 discusses injection molding of plastics, with a special look at closures, rotational and compression molding, and tubes. Chapter 12 looks at formation of plastics into bottles and other containers by blow molding. Chapter 13 looks at distribution packaging, with an emphasis on foams and cushioning. Chapter 14 looks at the barrier characteristics and other mass transfer characteristics of packaging and how they relate to the shelf life of products. In Chapter 15, we examine various laws and regulations impacting packaging choices. Finally, Chapter 16 looks at environmental issues associated with plastic packaging, including biodegradable and biobased plastics.

Throughout the book, long examples are placed in boxes. Most chapters end with a set of study questions. In many cases, the answers can be found (or calculated) from the material in the chapter. In other cases, answering the questions requires the reader to put together information from several previous chapters. Sometimes, the questions are intended to stimulate thinking in preparation for what will be discussed in subsequent chapters and cannot be answered completely with only the information that has already been presented. The correct solutions to quantitative questions are included.

1.4 References

Low density polyethylene is one of the most widely used packaging plastics. It is a member of the polyolefin family. Olefin, which means oil-forming, is an old synonym for alkene, and was, originally, the name given to ethylene. Alkenes are hydrocarbons containing carbon-carbon double bonds, such as ethylene and propylene. In the plastics industry, olefin is a common term that refers to the family of plastics based on ethylene and propylene. The term polyolefin strictly applies to polymers made of alkenes, whether homopolymers or copolymers. It includes the family of polyethylene, and the family of polypropylene.

Polyethylene (PE) is a family of addition polymers based on ethylene. Polyethylene can be linear or branched, homopolymer, or copolymer. In the case of a copolymer, the other comonomer can be an alkene such as propene, butene, hexene, or octene; or a compound having a polar functional group such as vinyl acetate (VA), acrylic acid (AA), ethyl acrylate (EA), or methyl acrylate (MA). If the molar percent of the comonomer is less than 10%, the polymer can be classified as either a copolymer or homopolymer. Figure 4.1 presents a diagram of the family of polymers based on ethylene monomer.

Polyethylene was the first olefinic polymer to find use in food packaging. Introduced in the 1950s, it became a common material by 1960, used in film, molded containers, and closures. Since low density polyethylene was first introduced in 1940, strength, toughness, thermal and heat sealing properties, optical transparency, and processing conditions have been much improved. Today there are a number of polyethylene grades of relevance to packaging, as shown in Fig. 4.1.

Low density polyethylene has a branched structure. The family of branched polyethylenes includes homopolymers and copolymers of ethylene that are nonlinear, thermoplastic, and partially crystalline. They are fabricated under high pressure and temperature conditions by a free radical polymerization process. The random polymerization of ethylene under these conditions produces a branched polymer
that is actually a mixture of large molecules with different backbone lengths, various side chain lengths, and with various degrees of side-chain branching.

Linear PE has a high percent crystallinity, from 70 to 90%, because of its stereoregularity and the small size of its pendant groups. This is because the presence of branches in its backbone chain acts to limit the formation of polyethylene crystals by introducing irregularities in the structure. This high crystallinity results in relatively high density, so linear PE is known as high density polyethylene (HDPE). Branched PE has lower crystallinity and consequently lower density, so is known as low density PE (LDPE). LDPE typically has a crystallinity of 40 to 60%, with a density of 0.910 to 0.940 g/cm³; in contrast, HDPE has a density of about 0.940 to 0.970 g/cm³. Comonomers such as propylene and hexene are commonly used in the reaction to help control molecular weight. A wide variety of branched polyethylenes are commercially available, with properties dependent on the reaction conditions and on the type and amount of comonomer.

4.1.1 Low Density Polyethylene

The chain branching in homopolymer LDPE gives this polymer a number of desirable characteristics such as clarity, flexibility, heat sealability, and ease of processing. The actual values of these properties depend on the balance between the molecular weight, molecular weight distribution, and branching.

LDPE is also versatile with respect to processing mode, and is adaptable to blown film, cast film, extrusion coating, injection molding, and blow molding. Film is the
single largest form of LDPE produced. In the U.S., more than half of total LDPE production is made into films with thickness less than 300 microns (12 mils). Products made of LDPE include containers and bags for food and clothing, industrial liners, vapor barriers, agricultural films, household products, and shrink and stretch wrap films. LDPE can be used alone or in combination with other members of the PE resin family.

LDPE is characterized by its excellent flexibility, good impact strength, fair machinability, good oil resistance, fair chemical resistance, good heat sealing characteristics, and low cost (about $1.60/kg). Its transparency is better than HDPE because of its lower percent crystallinity. For the same reason, while it is a good water vapor barrier, it is inferior to HDPE. Similarly, it is an even poorer gas barrier than HDPE. A summary of the properties of LDPE is presented in Table 4.1.

Table 4.1 LDPE Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>0.910 to 0.925 g/cm³</td>
</tr>
<tr>
<td>(T_g)</td>
<td>(-120^\circ\text{C})</td>
</tr>
<tr>
<td>(T_m)</td>
<td>105–115°C</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>8.2–31.4 MPa (1200–4550 psi)</td>
</tr>
<tr>
<td>Tensile modulus</td>
<td>172–517 MPa (24,900–75,000 psi)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>100–965%</td>
</tr>
<tr>
<td>Tear strength</td>
<td>200–300 g/25 (\mu) m</td>
</tr>
<tr>
<td>WVTR (water vapor transmission rate)</td>
<td>375–500 g (\mu) m/m² d at 37.8°C, 90% RH (0.95–1.3 g mil/100 in² d at 95°F, 90% RH)</td>
</tr>
<tr>
<td>(O_2) permeability, 25°C</td>
<td>163,000–213,000 cm³ (\mu) m/m² d atm (400–540 cm³ mil/100 in² d atm)</td>
</tr>
<tr>
<td>(CO_2) permeability, 25°C</td>
<td>750,000–1,060,000 cm³ (\mu) m/m² day atm (1900–2700 cm³ mil/100 in² d atm)</td>
</tr>
<tr>
<td>Water absorption</td>
<td><0.01%</td>
</tr>
</tbody>
</table>

Medium density polyethylene (MDPE), 0.925–0.940 g/cm³, is sometimes listed as a separate category, but usually is regarded as the high density end of LDPE. It is somewhat stronger, stiffer, and less permeable than lower density LDPE. MDPE processes similarly to LDPE, though usually at slightly higher temperatures.

The major competitor to LDPE is LLDPE (discussed in Section 4.2.1), which provides superior strength at equivalent densities. However, LDPE is still preferred in applications demanding high clarity or for extrusion coating a substrate.

Ethylene can be copolymerized with alkene compounds or monomers containing polar functional groups, such as vinyl acetate and acrylic acid. Branched ethylene/alkene copolymers are essentially the same as LDPE, since in commercial practice a certain amount of propylene or hexene is always added to aid in the control of molecular weight.
4.1.2 Ethylene Vinyl Acetate (EVA)

Ethylene vinyl acetate copolymers (EVA) are produced by copolymerizing ethylene and vinyl acetate monomers.

\[
\begin{align*}
 &\text{H} \quad \text{H} \\
 &\text{C} = \text{C} \\
 &\text{H} \quad \text{O} \\
 &\text{C} = \text{O} \\
 &\text{CH}_3
\end{align*}
\]

The result is a random copolymer, where

\[
-\text{O} - \text{C} - \text{CH}_3
\]

groups appear as side groups at random locations on the carbon chain, replacing H atoms.

EVA copolymers with vinyl acetate (VA) contents ranging from 5 to 50% are commercially available. For most food applications, VA ranging from 5 to 20% is recommended. EVA resins are mainly recognized for their flexibility, toughness, and heat sealability.

Vinyl acetate is a polar molecule. The inclusion of polar monomers in the main chain during production of branched ethylene copolymers will lower crystallinity, improve flexibility, yield a wider range of heat sealing temperature, and result in better barrier properties, as well as increasing density. These changes in properties result from the interference with crystallinity caused by the presence of random irregularities produced by the relatively bulky side groups from the comonomer, plus an increase in intermolecular forces resulting from the presence of polar groups in the comonomer. The increase in density is attributable to the presence of oxygen atoms with their higher mass, which more than compensates for the decreased crystallinity.

EVA is a random copolymer whose properties depend on the content of vinyl acetate and the molecular weight. As the VA content increases, the crystallinity decreases, but the density increases. Other properties are also affected, resulting in improvement in clarity, better flexibility at low temperature, and an increase in the impact strength. At 50% VA, EVA is totally amorphous. The increased polarity with increasing VA content results in an increase in adhesion strength and hot tack. An increase in average molecular weight of the resin increases the viscosity, toughness, heat seal strength, hot tack, and flexibility.
Because of its excellent adhesion and ease of processing, EVA is often used in extrusion coating and as a coextruded heat seal layer. Examples include functioning as a heat sealing layer with PET, cellophane and biaxially oriented PP packaging films (20% VA) for cheese wrap, and medical films. Because EVA has limited thermal stability and low melting temperature, it has to be processed at relatively low temperatures. However, this also results in toughness at low temperatures, which is a significant asset for packages such as ice bags and stretch wrap for meat and poultry.

4.1.3 Ethylene Acrylic Acid (EAA)

The copolymerization of ethylene with acrylic acid (AA)

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{C} & \quad \text{C} \\
\text{H} & \quad \text{C}=\text{O} \\
& \quad \text{OH}
\end{align*}
\]

produces copolymers containing carboxyl groups (HO–C=O) in the side chains of the molecule. These copolymers are known as ethylene acrylic acid, EAA. They are flexible thermoplastics with chemical resistance and barrier properties similar to LDPE. EAA, however, is superior to LDPE in strength, toughness, hot tack, and adhesion, because of the increased intermolecular interactions provided by the hydrogen bonds. Major uses include blister packaging and as an extruded tie layer between aluminum foil and other polymers.

As the content of AA increases, the crystallinity decreases, which implies that clarity also increases. Similarly, adhesion strength increases because of the increase in polarity, and the heat seal temperature decreases due to the decrease in crystallinity.

Films of EAA are also used in flexible packaging of meat, cheese, snack foods, and medical products; in skin packaging; and in adhesive lamination. Extrusion coating applications include condiment and food packages, coated paperboard, aseptic cartons, composite cans, and toothpaste tubes. FDA regulations permit use of up to 25% acrylic acid for copolymers of ethylene in direct food contact.
4.1.4 Ionomers

Neutralization of EAA or a similar copolymer, for example EMAA (ethylene methacrylic acid), with cations such as Na\(^+\), Zn\(^{2+}\), Li\(^+\), produces a material that has better transparency, toughness, and higher melt strength than the unneutralized copolymer. These materials are called ionomers because they combine covalent and ionic bonds in the polymer chain. The structure of an ionomer of the ethylene sodium acrylate type is:

\[
\text{–CH}_2\text{–CH –CH}_2\text{–CH}_2\text{–CH –CH –CH}_2\text{–CH–CH}_2\text{–}
\]

\[
\quad\text{C=O} & \quad\text{C=O} \\
\quad\text{O}^-\text{Na}^+ & \quad\text{O}^-\text{Na}^+
\]

Ionomers were developed in 1965 by R.W. Rees and D. Vaughan while working for DuPont, which uses the trade name Surlyn for these materials.

The ionic bonds produce random cross-link-like ionic bonds between the chains, yielding solid-state properties usually associated with very high molecular weight materials. However, ionomers behave as normal thermoplastic materials because the ionic bonds are much more readily disrupted than covalent bonds, allowing processing in conventional equipment. Normal processing temperatures are between 175 and 290\(^\circ\)C. The presence of ionic bonds decreases the ability of the molecules to rearrange into spherulites, thus decreasing crystallinity. The high elongational viscosity caused by the ionic bonds imparts excellent pinhole resistance.

Barrier properties of ionomers alone are relatively poor, but combined with PVDC, HDPE, or foil they produce composite materials that are excellent barriers.

Ionomers are frequently used in critical coating applications, films, and laminations. Applications include heat seal layers in a variety of multilayer and composite structures. They are used in combination with nylon, PET, LDPE, and PVDC. Coextrusion lamination and extrusion coating are the most common processing techniques.

Ionomers are used in packaging where formability, toughness, and visual appearance are important. Food packaging films are the largest single market. They are highly resistant to oils and aggressive products, and provide reliable seals over a broad range of temperatures. Ionomers stick very well to aluminum foil. They are also used extensively as a heat-sealing layer in composite films for fresh and processed meats, such as hotdogs. Other applications of ionomers include frozen food (fish and poultry), cheese, snack foods, fruit juice (Tetra Pak\(^\text{TM}\) type container), wine, water, oil, margarine, nuts, and pharmaceuticals. Heavy gauge ionomer films are used in skin packaging for hardware and electronic products due to their excel-
tained from both materials, with LLDPE adding strength and LDPE adding heat seal and processability.

It has been found that as the density is pushed below 0.91 g/cm³ by the incorporation of higher levels of comonomer, the level of hexane extractables increases to a level beyond that sanctioned by the FDA. These extractables also can oxidize, resulting in off odors and off flavors.

Polyethylenes with larger amounts of comonomer and consequently density below the normal LLDPE range are called very low density polyethylene, VLDPE, or ultra low density polyethylene, ULDPE. While these can be produced using Ziegler-Natta catalysts, often they are made using metallocene catalysts, as described next.

4.2.3 Metalloocene Polymers

In the 1990s, a new family of polyethylenes based on metallocene catalysts emerged. These catalysts offered significant new ability to tailor the properties of linear polyethylenes and other polyolefins. In particular, they have the ability to provide more uniform incorporation of comonomers.

Metallocene catalysts (Fig. 4.3) were first discovered in the early 1950s by Natta and Breslow, and were first used to make polyethylene in 1957. These catalysts were used to produce syndiotactic polystyrene in 1984 and syndiotactic polypropylene (FINA) in 1986. However, commercialization for polyethylene did not come until the mid-1990s, since until that time the advantages the new catalyst systems offered were not fully appreciated. Metallocene catalysts employed today commonly contain a co-catalyst to increase the catalyst activity.

![Figure 4.3](image-url)
The first metallocene catalysts were biscyclopentadienyl titanium complexes and dialkylaluminum chloride. These catalysts were not stable and produced very low yields. However, they were the first catalyst systems to produce copolymers of polypropylene and 1-butene with very high comonomer uniformity, due to the fact that they had only one type of active site.

In the 1980s and 1990s, improved polymer characterization techniques were used to explain some of the characteristics, particularly higher haze and higher extractables, of LLDPE. Traditional Ziegler-Natta catalysts were found to have three different types of sites on the catalyst particles. As shown in Fig. 4.4, one type of site produced a low MW species with a high proportion of comonomer. Another site produced a high MW species with very little comonomer, and the third type of site produced the predominant medium MW species with a medium amount of comonomer, which was the desired polymer. When the comonomer content was pushed up to produce densities below 0.91 g/cm3, the percentage of low molecular weight material with a high concentration of comonomer increased. The extractables and off odors are due to this low MW species. The haze in LLDPE is primarily due to the high MW, linear fraction, which develops a high degree of crystallinity.

Metallocene catalysts, on the other hand, contain only one type of site geometry, so are often referred to as single site catalysts (Fig. 4.5). They produce the desired copolymer, incorporating the comonomer in proportion to the amount added to the reactor. This results in improved properties. Compared to Ziegler-Natta catalysts, metallocene catalysts, by providing greater control over comonomer content, produce more uniform incorporation and improved MWD control. This results in improved clarity and lower extractables, permitting a higher level of incorporation of comonomer. Tensile strength and tear strength are both improved, and the polymer has a softer feel.

\[\text{Figure 4.4 Ziegler-Natta catalyst sites (Note: “branching” stems from incorporation of comonomer, so the side groups are not true branches.)} \]
The main class of metallocene catalysts used today is Kaminsky-Sinn catalysts. They are based on titanium, zirconium, or hafnium, and use methylaluminoxane as a co-catalyst. These catalysts produce very uniform comonomer incorporation and very narrow molecular weight distributions.

Figure 4.6 shows the results for hexane extractables on conventional LLDPEs and on metallocene polymers of lower density, but similar comonomer content. Figure 4.7 shows the effect of the catalyst change on the haze in films.
Metalloocene catalysts also permit the incorporation of novel comonomers that cannot be used with older Ziegler-Natta catalysts. Long alpha olefins can be incorporated, giving the effect of controlled long-chain branching, and offering some of the benefits of LDPE, such as improved heat sealing, along with the benefits provided by control over MW and MWD. Constrained geometry catalysts (Fig. 4.8) are used to produce LLDPE with controlled “long chain branching” (LCB). These so-called long chain branches arise from incorporation of higher \(\alpha\)-olefins, which are long alkenes (longer than octene) with a double bond at one end.

![Constrained geometry catalyst](image)

Processing is similar to LLDPE. The narrower MWD of the metallocenes results in higher viscosity at high shear rates, and therefore higher horsepower requirements for the extruder.

The improved control over the polymer structure offered by these catalysts offers the polymer producer a significantly greater ability to tailor the polymer to the end-user requirements. Polymer research with metallocene catalysts continues, so more advances can be expected for polyethylene, polypropylene, and other polyolefins.

4.2.4 Property Trends in the Polyethylene Family

The family of polyethylenes has many properties in common. Tables 4.4 and 4.5 show the relationship of these properties to molecular weight, MWD, and density.

<table>
<thead>
<tr>
<th>Density of polyethylene g/cm(^3)</th>
<th>WVTR g (\mu)m/m(^2) day</th>
<th>Oxygen Permeability cm(^3) (\mu)m/m(^2) day atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.910</td>
<td>0.866</td>
<td>275</td>
</tr>
<tr>
<td>0.915</td>
<td>0.779</td>
<td>256</td>
</tr>
<tr>
<td>0.920</td>
<td>0.685</td>
<td>225</td>
</tr>
<tr>
<td>0.925</td>
<td>0.579</td>
<td>201</td>
</tr>
</tbody>
</table>
Study Questions

1. How do high density, low density, and linear low density polyethylene differ in structure? How do these structural differences affect the properties of the polymers? Why?

2. Why is PP stiffer than HDPE? Why does it have a higher melt temperature? How does this affect packaging uses for these materials?

3. Ionomers are known for their excellent toughness and excellent heat seal characteristics. Relate these characteristics to the chemical structure of the polymer, to explain why they perform so well in these areas.

4. How is the dependence of permeability on density in polyethylene, as illustrated in Table 4.4, related to the structure (chemical or physical) of the polymer? What is the single factor most responsible for the difference in barrier ability?

5. What is the most significant reason that PVDC is a much better barrier than HDPE?

6. Draw the structures of the monomers used to form nylon 12 and nylon 6,10.

7. Explain why the oxygen barrier of EVOH is strongly affected by the amount of water present, but the oxygen barrier of PVDC is not much affected.

8. When we use PVDC and PAN, we commonly use copolymers, even though copolymerization reduces their barrier capability. Why?

9. Polyethylenes, especially low density PE, are referred to as soft and flexible, while nylons and PET are said to be stiff. What molecular feature(s) cause(s) a polymer chain to be stiff?

10. Why do we say that polyethylene is actually a family of polymers?

11. How would you design a copolymer containing ethylene that is more transparent, heat seals better, and is more permeable to water than LDPE?

12. What is the impact on polymer properties of catalysts like the Ziegler-Natta family and the newer single-site metallocenes?

13. Based on what you have learned in Chapters 2–4, explain the property trends of PE listed in Table 4.5.

14. Why are there three stereochemical configurations of PP? Explain why this affects the packaging applications of PP. What would be the effect of these configurations on the properties of a copolymer of PP?

15. Unplasticized PVC presents an important problem during processing. What is it, and why does it happen? What is the recommended solution? Explain.
16. In what aspect is PVC superior to HDPE as a packaging material? Why are the properties of PVC so different from those of PVDC?

17. Name a plastic that is completely transparent and brittle at room temperature. Give a list of uses for such a plastic. Explain.

18. Compare the properties of PVOH and EVOH. Explain the similarities and differences.

19. What family of polymers is very tough, has high melting temperatures, good impact strength, excellent temperature stability, and is moisture sensitive? Explain these properties based on the chemical structure of the polymers.

20. List the types of polyesters discussed in this chapter. Write their chemical structures, and list their major characteristics.

21. List possible packaging applications for polytetrafluoroethylene.

23. Imagine that liquid crystal polymers are as inexpensive as PET. Suggest possible applications for LCP in packaging.

24. Do you think conductive polymers have a future in packaging? Explain.

25. What are thermoplastic elastomers, and how do they apply to packaging?

26. What are acrylic, epoxy, and phenolic thermosets?

27. Compare cellophane and polypropylene films.
6.3 Adhesive and Cohesive Bond Strength

As mentioned above, the adhesion forces develop at the interface between the adherend and the adhesive, and it is at this interface where interfacial forces play the important role of holding the two surfaces together. These are called the adhesive forces. If adhesives are used to join two materials as in Fig. 6.1, besides the adhesive forces, the strength and integrity of the bonded structure depends on the strength of each material and of the bulk adhesive. The forces of intermolecular attraction acting within a material are termed cohesive forces. The cohesive forces in an adhesive depend on its own molecular and physical structure, and are not influenced by the interfacial forces. Therefore, adhesive forces determine the adhesive bond strength at the interfaces, and cohesive forces determine the cohesive strength both within the bulk of the adhesive, as well as in the substrates being joined. The survival and performance of the composite structure depends on all of these.

Adhesive forces are provided by attractions between neighboring molecules and include the same types of forces discussed in Section 2.2.2. Because these forces require a distance of no more than 3 to 5 Å to have reasonable strength, the neighboring molecules at the interface must be very close together for adhesion to occur. This has important practical implications for effective adhesion. The adhesive, at the time of application, must be able to completely “wet” the adherend surface, and must have a low enough viscosity to be able to flow into and fill any irregularities in the substrate surface, in order to bring the adhesive and substrate close together on a molecular scale.

To obtain maximum adhesion, the adhesive bond strength between the adhesive and adherend should be greater than the cohesive bond strength of the adhesive, as indicated in Fig. 6.2. (Of course, the overall strength is also limited by the cohesive strength of the substrates.)
6.3.1 Adhesive Bond Strength

There are several factors that can be used to match an appropriate adhesive to an adherend, including surface tension, solubility parameter, and viscosity.

6.3.1.1 Surface Tension

Solid surfaces have many irregularities, and since adhesion is a surface phenomenon, the adhesive must fill completely all pores and surface irregularities of the adherend at the moment of application. To accomplish this, the adhesive must be applied in a liquid or semiliquid state. The liquid adhesive must penetrate all the pores and crevices, eliminating any air pockets, to obtain a homogeneous bond between the adherend and adhesive. The adhesive needs to “wet” the adherend surface, and the better the wettability of the adhesive/adherend pair, the better the chance of producing homogeneous spreading of the adhesive.

The wettability characteristics of an adhesive/adherend pair are determined by the relative values of surface tension of the adhesive and adherend. Surface tension of a liquid is a direct measurement of intermolecular forces and is half of the free energy of molecular cohesion. Surface tension is commonly represented by γ (gamma), and is measured in dynes/cm. The value of the surface tension of the solid substrate, or adherend, is called the critical surface tension, γ_c. To ensure that the surface of the adherend will be wetted by an adhesive, an adhesive whose surface tension is less than the critical surface tension should be selected, so that

$$\gamma_{\text{adh}} < \gamma_c \quad (6.1)$$

In practice, the surface tension of the adhesive should be at least 10 dynes/cm smaller than γ_c. Selected values of γ are listed in Table 6.1, and published in various handbooks.
The surface tension of plastic surfaces can be measured using a calibrated set of solutions. A more sophisticated, and expensive, method is to measure the contact angle the liquid makes with the surface. This method was first described almost 200 years ago for evaluating the wettability of surfaces. The angle measured is the one formed by the tangent on the surface of a drop of liquid at the point of contact with the solid surface and the surface. If the angle is zero, the liquid is said to completely wet the surface. If the angle is not zero, the liquid is said to be non-spreading, and the surface tension of the surface is related to the surface tension of the liquid and the contact angle.

From the values in Table 6.1, one can conclude the following:
1. Water does not wet any of these polymers.
2. Toluene wets PET and nylon 6,6 but not polytetrafluoroethylene (PTFE, Teflon).
3. The very low γ_c value of PTFE means it will not be wet by most substances, so adhering materials to it is difficult.

The critical surface tensions of polymeric materials such as polyolefins can be increased by surface treatment such as corona treatment, chemical etching, flame treatment, and mechanical abrasion, in order to facilitate adhesive bonding.

6.3.1.2 Solubility Parameter

An important criterion for determining the chemical compatibility between an adherend and an adhesive in a solvent is the solubility parameter, δ. The solubility parameter is the square root of the cohesive energy density, CED:

$$\delta = (CED)^{1/2} = (\Delta E / V)^{1/2}$$ \hspace{1cm} (6.2)

where ΔE is the energy of vaporization and V is the molar volume. A common unit for δ is (cal/cm3)$^{1/2}$, which is called a hildebrand, equal to $\Delta H_v - RT$, where ΔH_v is the enthalpy of vaporization, R is the gas constant, and T is the absolute temperature.

When the adherend is an organic compound and is not too polar, the solubility parameter is useful in selecting an adhesive, allowing one to prescreen adhesives.
for a particular polymer application. According to the laws of thermodynamics, the greater the difference between the solubility parameters of two materials, the less compatible they are. Consequently, good compatibility is favored when the adhesive and adherend have similar solubility parameters.

$$\delta_1 \approx \delta_2$$ \hspace{1cm} (6.3)

where δ_1 and δ_2 are the solubility parameters of the adhesive and adherend. Representative solubility parameters for selected materials are listed in Table 6.2. Actual solubility parameters will vary somewhat, depending on the precise formulation of the materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Solubility Parameter, δ (hildebrands)</th>
<th>Critical Surface Tension, γ_c (dyn cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly(1H, 1H-pentadecafluoroctyl acrylate)</td>
<td>–</td>
<td>10.4</td>
</tr>
<tr>
<td>Polytetrafluoroethylene</td>
<td>6.2</td>
<td>18.5</td>
</tr>
<tr>
<td>Silicone, polydimethyl</td>
<td>7.6</td>
<td>24</td>
</tr>
<tr>
<td>Butyl rubber</td>
<td>7.7</td>
<td>27</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>7.9</td>
<td>31</td>
</tr>
<tr>
<td>Natural rubber</td>
<td>7.9–8.3</td>
<td>–</td>
</tr>
<tr>
<td>Natural rubber-resin adhesive</td>
<td>–</td>
<td>36</td>
</tr>
<tr>
<td>Polyisoprene, cis</td>
<td>7.9–8.3</td>
<td>31</td>
</tr>
<tr>
<td>Polybutadiene, cis</td>
<td>8.1–8.6</td>
<td>32</td>
</tr>
<tr>
<td>Butadiene-styrene rubbers</td>
<td>8.1–8.5</td>
<td>–</td>
</tr>
<tr>
<td>Polyisobutylene</td>
<td>8.0</td>
<td>–</td>
</tr>
<tr>
<td>Polysulfide rubber</td>
<td>9.0–9.4</td>
<td>–</td>
</tr>
<tr>
<td>Neoprene (chloroprene)</td>
<td>8.2–9.4</td>
<td>38</td>
</tr>
<tr>
<td>Butadiene-acrylonitrile rubbers</td>
<td>9.4–9.5</td>
<td>–</td>
</tr>
<tr>
<td>Poly(vinyl acetate)</td>
<td>9.4</td>
<td>–</td>
</tr>
<tr>
<td>Poly(methyl methacrylate)</td>
<td>9.3</td>
<td>39</td>
</tr>
<tr>
<td>Poly(vinyl chloride)</td>
<td>9.5–9.7</td>
<td>39</td>
</tr>
<tr>
<td>Urea-formaldehyde resin</td>
<td>9.5–12.7</td>
<td>61</td>
</tr>
<tr>
<td>Epoxy</td>
<td>9.7–10.9</td>
<td>–</td>
</tr>
<tr>
<td>Polyamide-epichlorohydrin resin</td>
<td>–</td>
<td>52</td>
</tr>
<tr>
<td>Ethyl cellulose</td>
<td>10.3</td>
<td>–</td>
</tr>
<tr>
<td>Poly(vinyl chloride-acetate)</td>
<td>10.4</td>
<td>–</td>
</tr>
<tr>
<td>Poly(ethylene terephthalate)</td>
<td>10.7</td>
<td>43</td>
</tr>
<tr>
<td>Cellulose acetate</td>
<td>10.9</td>
<td>39</td>
</tr>
<tr>
<td>Cellulose nitrate</td>
<td>10.6–11.5</td>
<td>–</td>
</tr>
</tbody>
</table>
For polar substances, the types of interactions, as well as their strength, becomes significant, and selection of a proper adhesive by solubility parameter alone does not always work well. A more general, simple rule for selection of adhesives is “like sticks to like.” In other word, the greater the chemical similarity between two materials, the larger will be the intermolecular forces between them.

6.3.1.3 Viscosity

Once the condition of wettability of the adherend surface is settled, the viscosity of the adhesive has to be considered. Low viscosity of the adhesive facilitates the spread of the adhesive, while high viscosity makes it difficult to apply the adhesive homogeneously over the surface. Viscosity decreases with increasing temperature and increases with increasing values of average molecular weight (MW).
Adhesion, Adhesives, and Heat Sealing

A summary of the main variables affecting adhesion is presented in Fig. 6.3.

Figure 6.3 Variables affecting cohesive and adhesive forces

6.3.1.4 Estimation of Adhesive Bond Strength

The adhesive bond strength depends on the ability of the adhesive to wet the adherend surface and is quantitatively determined by the shear strength at the interface. It can be estimated from the following equation:

\[S = \gamma_1 + \gamma_2 - \gamma_{12} \]

\[\hat{\gamma}_1 = \frac{\gamma_1 + \gamma_2 - \gamma_{12}}{d} \]

where \(\gamma_1 \) and \(\gamma_2 \) are the surface tensions of the adhesive and adherend, \(\gamma_{12} \) is the interfacial surface tension, and \(d \) is the distance of separation between the molecules at which failure of the adhesive takes place. This corresponds approximately to an intermolecular distance of about 5 Å \((5 \times 10^{-8} \text{ cm})\).
Example:

Estimate the strength of the adhesive bond produced on bonding PVC with an epoxy adhesive, given the following specific data:

\[\gamma_1 (\text{PVC}) = 40 \text{ dynes/cm}, \gamma_2 (\text{Epoxy}) = 41.7 \text{ dynes/cm}, \]
\[\gamma_{12} (\text{PVC-Epoxy}) = 4.0 \text{ dynes/cm}; d = 5 \times 10^{-8} \text{ cm}. \]

\[S = \frac{\gamma_1 + \gamma_2 - \gamma_{12}}{d} = \frac{40 + 41.7 - 4.0}{5 \times 10^{-8}} = 1.55 \times 10^9 \frac{\text{dyn}}{\text{cm}^2} = 2.24 \times 10^4 \text{ psi} \]

6.3.2 Cohesive Bond Strength

Adhesives are applied in a liquid state to improve the wettability, as mentioned previously. In general, the liquid state is obtained by dissolving the adhesive in a solvent (organic solvent or liquid water), by dispersing or emulsifying the adhesive in water to produce a latex, by heating the adhesive, or by applying the adhesive in the form of liquid monomers that later react to form a solid. The adhesive, once applied between the two surfaces to be bonded, solidifies through eliminating the solvent, decreasing the temperature, or allowing time for reaction (curing).

Once it is solidified, the performance of the adhesive depends on its adhesive bond strength, as discussed, and on its cohesive bond strength. In many applications, the adhesive is selected so that the adhesive bond strength exceeds the cohesive bond strength. In that case, the overall strength of the adhesive joint will be the cohesive bond strength of the adhesive itself, or of the substrates, whichever is less.

Cohesive bond strength depends on both the chemical nature and the physical state of a material. Temperature and the molecular weight of the adhesive are two important factors. Increasing the molecular weight of an adhesive increases its cohesive strength, but also increases its viscosity and decreases wettability.

The cohesive bond strength of an adhesive can be estimated by the following equation:

\[S = \frac{2\gamma}{d} \]

(6.5)

where \(S \) is the shear stress of the cohesive bond of the adhesive, \(\gamma \) is the surface tension of the adhesive, and \(d \) is the distance of separation between the molecules at which failure occurs, approximately 5 Å.
6.8 Heat Sealing

Heat sealing is the process by which two structures containing at least one thermoplastic layer are sealed by the action of heat and pressure. This process can be applied to flexible, semirigid, and in some cases rigid packaging structures. The following discussion considers flexible structures, but the principles of heat sealing can be extended to other cases. Flexible structures can be classified in two groups, according to the type of material employed in their construction: supported and unsupported structures. Supported structures consist of laminations containing one or more nonthermoplastic layers (such as paper or foil), bonded to thermoplastic layers, at least one of which is used for sealing. Unsupported structures consist of one or more thermoplastic layers and do not contain a nonthermoplastic layer.

When sealing a flexible structure to make a package, the heat sealing layer is located in the interface, typically contacting another heat sealing layer. When heat and pressure are applied to the external surface to make the seal, the heat is transmitted by conduction or radiation to the packaging material, and then is transmitted through the material by conduction to the sealing layers (Fig. 6.4). Conduction is used more frequently than radiation as the heat input. The heat at the interface must be sufficient to melt the interface materials in order to produce a seal. The external pressure is needed to bring the thermoplastic sealing layers very close to each other, around a distance of 5 Å. A good seal is obtained when enough molecular entanglement has taken place within the polymer chains from the two thermoplastic heat sealing layers to destroy the interface and produce a homogenous layer that remains homogeneous after cooling. Dwell time is the time during which the external pressure holds the two structures together to allow molecular entanglement to take place. The pressure is released at the end of the dwell time. Often, the heat seal materials are still molten at this point, and the molecular interactions in the heat seal polymer(s) must be able to keep the sealing surface together against the forces that may act to pull them apart. This strength during the cooling phase is called hot tack.

Figure 6.4
Heat conduction in heat sealing
6.8.1 Sealing Methods

The method for heat sealing a particular structure depends on the type and form of the structures being sealed, as well as the type of package and product. The following are the most important sealing methods used in packaging:

6.8.1.1 Bar or Thermal Sealing

Thermal sealing uses heated bars to press together the materials to be sealed, with heat from the bars conducted through the materials to the interface, melting the heat seal layers and fusing them together (Fig. 6.5). When sufficient time has elapsed, the bars release and the material is moved out of the seal area. At this point, the materials are still hot, and the seal does not have its full strength, but the materials must be able to adhere to each other well enough to insure the integrity of the seal (have sufficient hot tack). The full strength of the seal develops as it cools to ambient temperatures. Proper seal formation requires the correct combination of heat, dwell time (the time the material is held between the sealing bars), and pressure. Too little of any of these will prevent an adequate seal from forming. On the other hand, excessive heat, time, or pressure will result in too much flow in the heat seal layers, weakening the material.

![Figure 6.5](image)

Bar sealing or thermal sealing (reprinted with permission from [6])

The edges of the heat-seal bars are often rounded so that they do not puncture the packaging material. Often the contact surface of one of the bars contains a resilient material to aid in achieving uniform pressure in the seal area. Bar sealing is the most commonly used method of heat-sealing packaging materials, and is often used in form-fill-seal operations.

A variation on bar sealing uses only one heated bar, with the other bar not heated, resulting in heat conduction occurring only in one direction. Another variation uses heated rollers instead of bars, with the materials sealed as they pass between the rollers. In this type of system, preheating, slow travel through the rollers, or both, are generally required due to the very short contact time between the rollers. A third variation uses shaped upper bars for sealing lids on cups and trays.
6.8.1.2 Impulse Sealing

Impulse sealing (Fig. 6.6) is another common heat-seal method. Impulse sealing uses two jaws, like bar sealing, but instead of remaining hot, the bars are heated intermittently by an impulse (less than one second) of electric current passed through a nichrome wire ribbon contained in one or both jaws. The jaws apply pressure to the materials both before and after the current flow. The current causes the ribbon to heat, and this heat is conducted to the materials being sealed. After the pulse of current is passed through the wire ribbon, the materials remain between the jaws for a set length of time, and begin to cool. Thus, impulse sealing provides for cooling while the materials are held together under pressure. This method allows materials with a low degree of hot tack to be successfully sealed, as well as permitting sealing of materials that are too weak at the sealing temperature to be moved without support. The sealing jaws can be water-cooled for faster cooling of the materials being sealed. Shaped impulse seals are used for sealing lids on cups and trays.

![Impulse Sealing Diagram](image)

Impulse sealing produces a narrower seal than bar sealers, resulting in a better looking but weaker seal. Maintenance requirements tend to be heavy, since the nichrome wires often burn out and require replacement. A fluoropolymer tape on the jaws, covering the nichrome wire, is often used to keep the plastic from sticking to the jaws, and may also require frequent replacement.

6.8.1.3 Band Sealing

Band sealing, illustrated in Fig. 6.7, like impulse sealing provides a cooling phase under pressure. This high speed sealing system uses two moving bands to provide pressure and convey the materials past first a heating station and then a cooling station. The primary disadvantage of this method is the tendency for wrinkles in the finished seals. Preformed pouches that are filled with product are often sealed using this method.
6.8.1.4 Hot Wire or Hot Knife Sealing

This method, as its name describes, uses a hot wire or knife to simultaneously seal and cut apart plastic films. The wire or knife causes the substrates to fuse as it is pushed through, cutting them off from the webstock. The seal produced is very narrow and often nearly invisible. It is also relatively weak, and does not provide a sufficient barrier to microorganisms to be used when a hermetic seal is required. However, it is very economical due to its high speed, and is an excellent choice for relatively undemanding packaging applications with materials that seal readily, such as LDPE bags used in supermarket produce sections.

6.8.1.5 Ultrasonic Sealing

In ultrasonic sealing, two surfaces are rubbed together rapidly. The resulting friction generates heat at the interface, melting the surfaces of the substrates and producing a seal. Since the heat is generated only in the seal area, ultrasonic sealing is particularly useful for thick materials where conduction is inefficient. It is also useful when exposure to heat for a sufficient time to conduct heat to the seal can damage the substrates, such as in sealing highly oriented materials, which can lose their orientation and shrink when heated.

There has been considerable interest in recent years in ultrasonic sealing for food packaging applications. Systems are available for both continuous and intermittent ultrasonic sealing. This appears to be a growth area.

6.8.1.6 Friction Sealing

Friction sealing, often called spin welding, like ultrasonic sealing uses friction to produce heat. It is most often used for assembling two halves of a rigid or semirigid plastic object, such as a deodorant roller or a container, or sometimes for sealing caps to bottles. The two halves are most often circular in cross section, and one is rotated rapidly while the other is held in place. The halves are designed to fit together only with some interference, so there is considerable friction, generating heat that welds them together. The sealing mechanism usually has a sensor that measures the amount of resistance to rotation, and the object is released when the
packaging as the true driving force for the rapid growth in their use. The pouches are printed as rollstock, facilitating the use of high-quality multicolor images. The upright presentation makes the product readily visible to the consumer. Several shaped standup pouches have been introduced where the nonrectangular design is a significant advantage in catching the eye of the consumer and appealing to them, particularly in products designed for children.

Technological innovations in production of high barrier materials have also been important in the ability to use pouches for sensitive products. Many such pouches fall into the dual category of stand-up retort pouches, and will be discussed in Section 9.4.

A remaining drawback to the use of pouches is their slow line speeds, which for beverage packaging is often only about half the speed used with bottles of the same capacity.

9.3 Forming Pouches

The most common way to make pouches (and to package products in pouches) is to use a form-fill-seal (FFS) machine, in which preprinted roll stock is formed into a package and the package is filled and sealed with product, all in a continuous operation within one piece of equipment. Cutting the pouches apart is usually accomplished within the FFS machine, as well.

Two configurations, vertical and horizontal, are defined by the direction of travel of the package through the machine (Figs. 9.3 and 9.4). The pouches are always produced and filled vertically in a vertical FFS machine, and can be produced and filled either vertically or horizontally in a horizontal FFS machine. A variety of pouch types can be made on either type of equipment. The sealing and cutting apart can be done simultaneously, or the pouches can first be sealed, and then cut apart at a subsequent station.
Figure 9.3
Vertical form-fill-seal machine

Figure 9.4
Horizontal form-fill-seal machine
An alternative to form-fill-seal equipment is to use preformed pouches. In this case, the preprinted pouch is supplied ready to be filled with product, and then after it is filled the top seal is made. In such cases, filling and sealing are most often done on two separate pieces of equipment.

Both form-fill-seal and preformed pouches have advantages and disadvantages. For large operations using materials that seal readily, form-fill-seal operations are usually the most economical. However, use of preformed pouches requires less capital investment, since the equipment is simpler and less expensive. It also requires less quality control, since only one seal must be monitored. Therefore, for low volume operations or materials that are difficult to seal correctly, use of preformed pouches can be advantageous. Consequently, most moderate-to-high volume packaging pouch operations use form-fill-seal technology, but operations using retort pouches or stand-up pouches are an exception, most often using preformed pouches.

9.4 Retort Pouches

Retort pouches are pouches that are designed to be filled, usually with a food product, and then retorted (heat-sterilized in a procedure analogous to canning) to produce a shelf stable product, one that does not require refrigeration. Some time ago, retort packages replaced cans in the U.S. military MRE (meals ready to eat) program. Their flexibility, smaller volume, and much lighter weight than cans are a significant advantage. In the consumer segment of the market, retort pouches have, until fairly recently, been much less successful. They were introduced by a number of companies, and generally failed to win consumer acceptance. The major consumer packaging use for many years remained a small market for foods targeted at backpackers and other campers. However, this has changed significantly in the last five years.

The initial design for retort pouches, and the one still used by the military, was a multilayer lamination containing an outside layer of polyester, a layer of aluminum foil, and an inside layer of polypropylene. The polyester provides strength and puncture resistance, the aluminum provides barrier, and the polypropylene provides the sealant and product contact layer. A significant disadvantage of this structure is that the food cannot be heated within the pouch by microwaving.

There are obvious trade-offs between choosing a material that is easy to seal, and choosing a material whose seal will remain strong at the elevated temperatures reached during retorting. Consequently, the retort pouch is not easy to seal. In addition to the difficulty in working with polypropylene as the sealant layer, to
ensure sterility, any wrinkling in the seal area must be eliminated. Therefore efficient manufacture of these pouches is difficult. Nearly all operations using retort pouches buy preformed pouches rather than using form-fill-seal systems, letting the experts deal with producing all but the final seal.

After many false starts, the retort pouch, especially in its stand-up variations, has now taken off, replacing cans or bottles in a number of significant applications. In addition to the advantages associated with flexible packaging in general, retort pouches provide an additional advantage. Because of their thin profile and high ratio of surface area to volume, food products can be sterilized in less time, typically 30 to 50% less than is required for canning, and sometimes even more. This results in greater retention of product quality. Simply put, products in retort pouches taste better than equivalent products processed in cans. The products also look better, and have greater nutritional value.

Development of improved sealing layers has facilitated sealing of retort packages. Developments in filling equipment permit preheating of the package, injection of steam or nitrogen into the headspace to minimize the amount of oxygen in the pouch in order to increase shelf life, and more rapid line speeds. Some retort pouches now incorporate zippers for reclosure. Others have spouts and caps. A variety of complex ultrahigh barrier laminate structures are now available as alternatives to the old aluminum foil structures. Retort pouches have been even more successful in a market few consumers see; replacing the large institutional size cans used by food service operations such as cafeterias and restaurants.

Retort pouches continue to be more successful in Asia and Europe than in the U.S. It is estimated that about 45% of all stand-up pouches used in Europe are retorted [4]. However, there are clear signs that U.S. consumers at long last are embracing the advantages that retort pouches can bring. The success of StarKist™ tuna in pouches was one of the early signs. Now it is increasingly common to find pet food, baby food, and a variety of other products appearing in pouches as an alternative to cans or glass bottles. Some have gone so far as to predict that cans would soon be on the “endangered species list” [7]. Experts cite the push for sustainability, cost reduction, and the 360-degree graphics as major influences in pouch growth [5].

9.5 Bulk and Heavy-Duty Bags

Bulk bags and heavy-duty bags are designed for packaging large quantities of solid or liquid product. They can contain as much as 5000 kg (11,000 lbs) and, therefore, must have high tensile strength. Woven PP fabric is usually the material of choice, although HDPE, PVC, and polyester fabric are also used. Some bags,
14.11 Shelf Life Estimation

The first step in shelf life estimation is to determine the parameters controlling the loss of product quality. Shelf life may end for a product due to moisture uptake, oxidation, spoilage from microbial action, or a combination of these and other factors. Therefore, one must determine what is causing the end-point to occur. Having done that, calculations to estimate when that will occur in a package can be made.

The first estimation of shelf life due to gain or loss of a volatile component is usually made using the assumption of a constant D_p across the package wall. The accuracy of this assumption will vary, depending on the product and the package. For instance, if the product was potato chips and the failure mechanism was oxidative rancidity, the assumption is fairly good. Oxygen pressure in the atmosphere is nearly constant at 0.21 atm. The oxygen concentration in the package will be nearly zero, since any headspace oxygen will quickly react with the oil in the product. If the product were a thick liquid where diffusion is slow, the assumption would not be so good. For moisture vapor over a long shelf life, the assumption is only a first approximation because the relative humidity of the atmosphere changes over time, and the relative humidity inside the package can change significantly as moisture is gained or lost in the product. For accurate estimates of shelf life, storage testing of real packages under nearly real-life conditions is often needed.

To determine the behavior of a product, it must be stored at known conditions for a period of time and its properties measured. In the case of oxidation, for example, some method must be available to determine the amount of reaction with oxygen that the product has undergone. This is often done by measuring peroxide values for oil-containing products, or hexanal values for products that have hexanal as the end degradation product for oxidation. For moisture sorption, the product can be stored over a saturated salt solution until moisture uptake is at equilibrium. Then taste or texture is often the measured parameter to determine the end-point of shelf life. For pharmaceuticals, the true end-point is determined by the bioavailability of the drug.

For any type of product that gains or loses water, one can measure the moisture content as a function of relative humidity, or water activity, and determine a moisture isotherm. As shown in Fig. 14.14, moisture isotherms are usually sigmoid shaped curves. However, one can sometimes use only the linear portion of the curve for shelf life predictions.
Let us look at an example of shelf life prediction where the Δp is constant throughout the storage.

Example:

Calculate the minimum thickness of PET for protection of a product that has an end of shelf life when it has reacted with 0.005% (wt/vol) of oxygen. The package design is a 500-ml container with 400 cm2 area. The product is a water-based liquid. Storage conditions are 25°C and 60% RH. The desired shelf life is six months. Also, calculate the water loss at the end of six months in this package.

Solution:

From Equation 14.13 by rearrangement,

$$\ell = \frac{P t A \Delta p}{q}$$ \hspace{1cm} (14.35)

From the literature, PET at 25°C has an oxygen transmission rate (OTR) of 22 cm3 (STP) μm/m2 d kPa

$t = 6$ months = 180 d

$A = 400$ cm2 = 0.04 m2

$\Delta p = 0.21$ atm = 21.27 kPa (assuming $p_i = 0$) (p_i is oxygen partial pressure inside the package)
To determine q, we must convert the 0.005% gain over six months to a flow:

$$q = 500 \text{ ml} \times \frac{0.005}{100} \times \frac{\text{ mol}}{22,412 \text{ cm}^3 \text{ mol}} \times \frac{32 \text{ g}}{\text{ mol}} = 17.5 \text{ cm}^3 \text{ (STP)}$$

Then

$$\ell = \frac{22 \text{ cm}^3 \text{(STP)} \mu m}{\text{ m}^2 \text{ d kPa}} \times 180 \text{ d} \times 0.04 \text{ m}^2 \times 21.27 \text{ kPa} \frac{1}{17.5 \text{ cm}^3 \text{(STP)} 193 \mu m} = 193 \mu m = 7.6 \text{ mil}$$

We can now use the same method to calculate the amount of water loss.

$$q = \frac{P t A \Delta p}{\ell}$$

Assume that the for PET is $8.5 \times 10^{-4} \text{ cm}^3 \text{(STP)} \mu m/\text{ m}^2 \text{ d kPa}$. The Δp is the difference in the vapor pressure in the container (100% RH) and that outside (60% RH). From a steam table, saturation vapor pressure at 25°C = 0.4592 psi $\times 6.895 \text{ kPa/psi} = 3.166 \text{ kPa}$.

$$\Delta p = 3.17 \times (100 - 60)/100 \text{ kPa} = 1.268 \text{ kPa}$$

$$q = \frac{8.5 \times 10^{-4} \text{ cm}^3 \text{(STP)} \mu m}{\text{ m}^2 \text{ d kPa}} \times 180 \text{ d} \times 0.04 \text{ m}^2 \times 1.268 \text{ kPa} \frac{1}{193 \mu m} = 4.0 \times 10^3 \text{ cm}^3 \text{(STP)} = 3.22 \text{ cm}^3 \text{ liquid water}$$

Now suppose that a product is stored in a real world situation where the moisture on the inside or the outside of the package changes over time. Then one needs the external environmental conditions and a moisture isotherm for the product. The moisture on the inside of the package may change over time even if the external conditions are constant because the product is reaching equilibrium with the internal moisture content. If the external conditions vary over too wide a range of temperatures, then multiple isotherms may be needed.

Let us consider an example where the external storage conditions are constant, and a product isotherm is known.
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>AA; see acetaldehyde-abrasion resistance 88</td>
</tr>
<tr>
<td>ABS; see acrylonitrile-butadiene-styrene absorbers</td>
</tr>
<tr>
<td>absorbance 97, 269</td>
</tr>
<tr>
<td>absorbers, UV; see UV absorbers</td>
</tr>
<tr>
<td>accelerated testing 397</td>
</tr>
<tr>
<td>acceptable daily intake 401</td>
</tr>
<tr>
<td>acetaldehyde 322</td>
</tr>
<tr>
<td>acrylic 119, 150, 197</td>
</tr>
<tr>
<td>acrylonitrile-butadiene-styrene (ABS) 3, 31, 119, 137</td>
</tr>
<tr>
<td>acrylonitrile copolymer 3</td>
</tr>
<tr>
<td>acrylonitrile-styrene 137</td>
</tr>
<tr>
<td>Actis™ coating 253, 335</td>
</tr>
<tr>
<td>activation energy 371</td>
</tr>
<tr>
<td>addition polymer 31, 32</td>
</tr>
<tr>
<td>additives 159, 401</td>
</tr>
<tr>
<td>adherend 185</td>
</tr>
<tr>
<td>adhesion 17, 105, 126, 185, 192, 241, 310, 336</td>
</tr>
<tr>
<td>adhesive 3, 9, 30, 60, 150, 185, 197, 198, 254, 350, 400</td>
</tr>
<tr>
<td>adhesive bond strength 91, 192</td>
</tr>
<tr>
<td>adhesive forces 187</td>
</tr>
<tr>
<td>ADI (accepted daily intake) 401</td>
</tr>
<tr>
<td>adipate plasticizer 178</td>
</tr>
<tr>
<td>adipic acid 175</td>
</tr>
<tr>
<td>adjuvant 399</td>
</tr>
<tr>
<td>advanced polymers 20</td>
</tr>
<tr>
<td>air gap 247</td>
</tr>
<tr>
<td>air knife 222</td>
</tr>
<tr>
<td>air ring 232</td>
</tr>
<tr>
<td>alkene 101</td>
</tr>
<tr>
<td>alkyds 150</td>
</tr>
<tr>
<td>alkyl acids 176</td>
</tr>
<tr>
<td>alkyl salts 176</td>
</tr>
<tr>
<td>alpha-olefin 114</td>
</tr>
<tr>
<td>alpha-tocopherol (Vitamin E) 165</td>
</tr>
<tr>
<td>aluminum 173, 174, 177, 251, 263, 283, 294, 332, 431</td>
</tr>
<tr>
<td>– foil 245, 252, 263–265, 297, 301</td>
</tr>
<tr>
<td>– hydrate 174</td>
</tr>
<tr>
<td>– oxides 253</td>
</tr>
<tr>
<td>– silicate 174</td>
</tr>
<tr>
<td>American Plastics Council 426</td>
</tr>
<tr>
<td>amide 151</td>
</tr>
<tr>
<td>amine; also see hindered amine light stabilizers (HALS) 151</td>
</tr>
<tr>
<td>amorphous 30, 56, 58–60, 68, 71, 83, 123, 134, 268, 272, 354, 375</td>
</tr>
<tr>
<td>amorphous carbon 253, 335</td>
</tr>
<tr>
<td>anisotropic behavior 65</td>
</tr>
<tr>
<td>annealing 236</td>
</tr>
<tr>
<td>ANS; see acrylonitrile-styrene</td>
</tr>
<tr>
<td>anthraquinone 172</td>
</tr>
<tr>
<td>antifog 174</td>
</tr>
<tr>
<td>antimalarial 182</td>
</tr>
<tr>
<td>antioxidant 164</td>
</tr>
<tr>
<td>antislip 170</td>
</tr>
<tr>
<td>antistat 175, 176, 351</td>
</tr>
<tr>
<td>APET 131</td>
</tr>
<tr>
<td>architecture (of polymers) 23, 40</td>
</tr>
<tr>
<td>aromatic polymer 16</td>
</tr>
<tr>
<td>Arrhenius equation 371</td>
</tr>
<tr>
<td>arylamine 164</td>
</tr>
<tr>
<td>aseptic; see aseptic packaging</td>
</tr>
<tr>
<td>aseptic packaging; also see blow molding, aseptic 284</td>
</tr>
<tr>
<td>ash, incinerator 410</td>
</tr>
<tr>
<td>aspect ratio 291</td>
</tr>
<tr>
<td>atactic 44, 59, 68, 116, 123</td>
</tr>
<tr>
<td>autoclave (stirred tank) 36–38, 116</td>
</tr>
<tr>
<td>axial ratio 318</td>
</tr>
<tr>
<td>azo compound 35</td>
</tr>
</tbody>
</table>
B

backbone 9
bag-in-box 257, 265
bags 5, 66, 258, 264, 429
Bakelite 1
balanced; see orientation
barefoot resin 160
barrel 213
barrier 89, 122, 125, 130,
136, 137, 228, 304, 318,
326, 335, 353, 364
barrier screw 217
bentonite 174
benzimidalone 172
benzoic acid 175
benzotriazole 165
BHT 165, 357
billow forming; see
thermoforming, bubble
(billow)
biobased PET 149
biobased plastics 141, 149
biobased polyethylene 148
biocides 182
biodegradable 141, 145,
148
biodegradable plastics
143, 440
BIRP 426
bisphenol-A 151, 178, 417
black body radiation 268
blends 30, 132, 133, 136,
152, 159
blister packaging 138,
267, 278
blocking 92, 169, 200, 243
bloom(ing) 92
blow; see blow molding
blowing agent 123, 183,
340
blow molding 36, 58, 66,
301, 303, 332
- aseptic 334
- coextrusion 329
- coinjection 329
- extrusion 131, 303, 304,
317
- injection 132, 294, 303,
317
- simulation 314, 316,
330
- stretch 66, 132, 301,
304, 313, 318
blown film 227, 231, 234
blow-up ratio 228, 319
boil-in-bag 260
bottle deposit; see deposit
legislation
bottle dimensions 336
bottle(s) 6, 109, 110, 126,
130, 132, 136, 137, 153,
179, 186, 196, 205, 207,
213, 260, 287, 303, 334,
429
boxes 350
branching 25, 39, 59, 60,
101
- long chain 25, 36, 63,
114
- short chain 25, 36
breaker plate 219
break point 81
bridging 215
brittleness 83
bubble 227
bubble wrap 344
bursting strength 88
bushing 309
butadiene rubber; see
polybutadiene
butene 110
calendering 223
can linings 150
caps; see closures
carbon, amorphous; see
amorphous carbon
carbonated soft drink
(CSD) 317
carbon black 167, 172
carbon nanotubes 183
carboxyl (–COOH) groups
246
casein 196
cast film, sheet 222, 226
catalyst 2, 12
- chromium 39
- Kaminsky-Sinn 113
- metalloocene 111, 114,
358
- single-site 2, 111
- Ziegler-Natta 2, 38, 39,
107, 116
CB-A 164
CB-D 164
CED; see cohesive energy
density
CF; see consumption
factor
CFCs; see chlorofluorocarbons
CFR; see Code of Federal
Regulations
cellophane 3, 142
celluloid 1
cellulose 1, 142
- acetate 3, 144
- butyrate 144
- esters 144
- nitrate 144
- propionate 144
cellulosic plastics 142, 144
chain scission 163
channel depth ratio 218
Charpy impact test 88
calcium compounds 166,
174, 377
chemical activity 354,
359
Index

chemical blowing agents (CBA) 183
chemical composition 19
chemical deposition 253
chemical potential 358
chemical recycling 433
child-resistant packaging 298
chill roll 222
chiral 43
chlorinated polyethylene 119
chlorofluorocarbons (CFCs) 183
clamp 289
clay 169, 182, 201
clay nanocomposites 254
cling 237
closures 294, 295, 298
- CT 296
- dispensing 298
- friction 294
- linerless 297
- snap-on 294, 295
- threaded 294, 296
coadhesive 198
Coalition of Northeastern Governors (CONEG) 410
coat-hanger die 226
coating(s) 9, 122, 143, 239, 245, 254, 334
- extrusion 245
cobalt compounds; also see heavy metals 172, 180, 330
COC; see cyclic olefin copolymers
Code of Federal Regulations (CFR) 396
coding, resin; see plastics
coding system
coefficient of friction 92
coefficients, thermal expansion 77
coeextrusion; also see blow molding, coextrusion 229, 230, 239, 245, 248, 254, 310
cohesive bond strength 91, 193
cohesive energy density, CED 17, 152, 189
cohesive forces 187
coinjection; see blow molding, coinjection
cold cast; also see cast film, sheet 222
cold-seal adhesive 198
collapsing core 293
collapsing frame 234
collection, recyclables 427
colligative properties 51
colorants 171, 399
commingled 428, 439
commodity plastics 20
compatibilizer 439
compositable 147
compounding 440
compounding 160
compression; see compression molding
compression cutting 279
compression molding 300, 301
compression section 213, 216
condensation polymer 13, 14, 31, 45, 48, 127, 130
conductive polymer 140, 177
CONEG; see Coalition of Northeastern Governors
configuration 40, 42
conformation 40, 43, 61
constitutional unit 12
cconsumption factor 401
containers 339
contaminants 407
converting 245
cooling 312
copolymer 13, 23, 27, 31, 40, 59, 61, 104, 105, 112, 118, 132, 133
- alternating 13, 28, 48
- block 13, 28, 61, 136
- graft 13, 30, 61, 136
- random 13, 27, 104
copolymerization 151, 152
copper 201, 332
core 303
core rod 312
corona discharge 241
corona treatment 189, 301
corrugated plastic 350
cosmetic packaging 409
coupling agents 183, 377
covalent bond 15, 16, 30
CPET 131, 273
CPSC 416
cretes 350
creep 20, 83, 296
critical point 36
cross-linking 26, 60, 73, 83, 150, 163, 238
cross-machine direction 66
crystalline, crystallinity 19, 23, 27, 38, 40, 56, 59, 71, 77, 83, 88, 102, 104, 106, 109, 121, 124, 128, 131, 133, 136, 142, 226, 228, 268, 272, 326, 354, 375
crystallites 29, 175, 228, 318
crystallization 61, 62, 325
CT closures; see closures, CT
cure, curing 150, 198
curtain 247
cushion curves 345
cushioning 5, 344
cyanoacrylate 194
cyclic olefin copolymers (COC) 138

deference

dancing mandrel 309
dart drop impact test 87
dead spots 229
deformation 81, 86, 272
degradable plastic 409
degradation 16, 26, 42, 323
- oxidative 117, 163
degree of polymerization, n 49
dehydrochlorination 166
density 19, 38, 66
density gradient 67
deposit legislation 423, 426, 434
desiccant 180
design 279
dextrin 196
diamond-like carbon (DLC) 253
diatomaceous earth 169, 174
diazo 172
dibutyl phthalate 178
dibutyl tin 167
dichloromethane 185
die 213, 219, 226, 229, 306
die gap 230, 231
dielectric constant 95
die shaping 303, 309
die swell 306
diethylhexyl phthalate (DEHP or DOP) 178, 417
differential scanning calorimetry (DSC) 66
diffusion 20, 66, 89, 353, 355, 362
diffusion coefficient 89, 364, 378
dimensional stability 78
dimer 24
dioctyl sebacate 178
diozones 172
dioxin 120
dipole forces 17, 18
disazo 172
dispersion 160
dispersion forces 17, 18
dispersity (dispersion index) 52
dissolution 360
distribution 160
doctor blade 250
double bubble 228, 236
draft angle 281
drape forming; see thermoforming, drape drawing
drawdown 230
draw ratio 280
drive mechanism 219
drum 6, 306, 349
dry bonding 249
DSC; see differential scanning calorimetry
DSD system 423
dual lip air ring 232
ductility 83
Dulmage mixer 218
dwell time 202
dye 172

ejection system 292
elastic elongation 81
elasticity 20, 52
elastic limit 81
elastic modulus 71
elastomer 140, 3
electrical properties 95
electron affinity 16
electron beam 134, 253
electronnegative 17
electropositive 17
electrostatic 145
electrostatic attraction 17
electrostatic discharge (ESD) 351
elongation 67, 81, 164, 237
emissivity 270
EMMA; see ethylene methacrylic acid
emulsion 200
endocrine disruptors 416, 444
energy 6, 16, 40, 42, 58, 63, 72, 77, 97, 443
engineering polymer 20
entanglement 56, 186
enthalpy 19
environment 419
environmental issues 6
environmental stress
 cracking 109
E/P 14, 27
EPA, Environmental Protection Agency 182, 420, 444
epoxide 166
epoxidized oil 178
epoxy 3, 60, 150, 151, 194
EPS Industry Alliance 438
erucamide 170
estimated daily intake
 (EDI) 401
ethylene 101, 103
Index

ethylene acrylic acid (EAA) 105
ethylene chloride 201
ethylene/maleic anhydride 170
ethylene methacrylic acid 106
ethylene oxide sterilization; see sterilization, ethylene oxide
ethylene scavenger 180
ethylene vinyl acetate (EVA) 26, 104, 141, 195, 197, 237
ethylene vinyl alcohol (EVOH) 3, 19, 20, 125, 138, 153, 180, 241, 242, 310, 330
expanded polystyrene foam (EPS) 341, 342
extended producer responsibility (EPR) 423
extenders 181
extruder 213, 231, 287
extrusion 26, 301
extrusion molding; see extrusion molding

F
family of hindered amine light stabilizers 168
fatigue 116, 237
fatty acid 170, 174, 176
fatty alcohol 174
FDA 111, 120, 133, 137, 144, 166, 173, 176, 331, 335, 356, 396–398, 404, 405, 408, 409
Federal Food, Drug, and Cosmetic Act 395
Federal Register 396, 403
feed block 239
feed port 215
feed section 215
feedstock recycling 433
FFS; see form-fill seal
fiber 181, 201
Fick's law 89, 355, 362
filler 181, 201, 376
– conductive 177
film 37, 102, 118, 122, 128, 254, 437
finish 303, 306, 312, 317, 318, 326, 328, 336
– crystallized 328
finite element analysis (FEA) 314
fin seal 258
fitments 299
flair swell (mandrel swell) 306
flame resistance 159, 182
flame retardants 183
flame treatment 189, 241, 334
flash 304, 305, 307, 310
flex-cracking 252
flexibility 73
flexible packaging 5, 208, 257
flexural modulus 81
Flory-Huggins equation 361
flow 55, 56, 71, 76, 117, 161, 170, 187, 211, 218, 220, 272, 273, 289, 290, 299, 300
fluorescent pigments 173
fluorination 335
fluoropolymers 3, 135
foam 76, 123, 331, 339
– closed cell 339
– foam-in-place 343
– open cell 339
– starch-based 344
fogging 174
foil; see aluminum, foil
folding endurance 88
food additive 398
food packaging 5, 398
formaldehyde 151
form-fill-seal (FFS) machine 261
Fourier's law 76, 347
fragility 345
fragrance enhancer 181
free radical 35, 41, 42, 163
– primary 42
– secondary 42
– tertiary 42
free volume 354, 368, 374
friction 18, 20, 215, 243
frost line 228, 233
F-style bottle 308
functional barrier 405, 408
functional groups 45
functionality 24, 46

G
gas constant 371
gas transmission rate (GTR) 365
gate 289, 312
gauge 224, 229
gel 26, 243
gel permeation chromatography 55
generally recognized as safe (GRAS) 405
glass transition temperature (Tg) 30, 63, 69, 72, 86, 142, 268, 354
glassy state 70
global warming (climate change) 444
gloss 94, 243
glue, animal 196
glycol 179
glycolysis 433
grunv roll 250
Green Dot system 423
grid melters 199
gusset 258, 260

H
HALS; see hindered amine light stabilizers handles 303, 317
haze 94
HCFC 341
HDPE; see high density polyethylene
head 301
head-to-head 59, 61
head-to-tail 41, 118
heat capacity 75, 208
heat conduction 208, 347
heat(ing) 67, 268
- radiative 268
heat of fusion 67, 75
heat sealing 93, 105, 106, 185, 202
heat-setting 318, 324, 326
heat stabilizers 166
heavy metals 171, 411
helix angle 216, 218
Henry’s law 90, 360, 363
hermetic 211, 295
heteroatoms 45
hexene 110
HFFS; see form-fill-seal
high density polyethylene (HDPE) 25, 38, 61, 102, 107, 108, 165, 230, 233, 294, 331, 425, 435
- spunbonded 206
hildebrand 189
hindered amine light stabilizers (HALS) 168
HIPS (high impact PS) 15, 30, 136, 154, 165
HMF 171
HMW-HDPE 108, 233
HNR 137
homopolymer 13, 23
hoop ratio 314, 319
hopper 214
hormones 416, 444
hot-fill 318, 324, 326
hot melt 195, 197
hot runner molding 293, 312
hot tack 93, 202, 209
humidity 78, 92, 127, 140, 180, 344, 374, 390
hydrobenzophenone 167
hydrofluorocarbons (HFCs) 183
hydrogen bond 19, 74, 124, 128, 142, 144, 374
hydroperoxide 35, 163
hydrophilic polymers 95

I
IBC; see internal bubble cooling
ideal gas law 359
impact modifiers 183
impact strength 87
incineration 420, 423, 443
indirect food additives 398
induction forces 17, 18
inflatable bags 345
inherently dissipative polymers (IDPs) 140
initiation 35
initiator 35
injection; see injection molding
injection mold(ing) 58, 62, 102, 108, 116, 118, 121, 213, 267, 287, 288, 291, 294, 300, 301, 303, 312, 318, 320, 332, 349
inner seals 207
insulation 340, 347
interactions 353
interatomic forces 15
interfacial energy 91
intermediate polymer 20
intermolecular forces 17, 19, 72, 124, 128, 137, 186
internal bubble cooling (IBC) 232
interpolymers 141
intramolecular forces 17
intrinsic viscosity (IV) 322
ionic bond 17, 106
ionomer 3, 17, 106, 247
iridescent 311
iron compounds 172, 178, 206
IR spectrophotometry 96
isomorphous 60, 61
isostatic 377
isotactic 44, 59, 63, 116
IV; see viscosity
Izod impact strength; also see impact strength 88

J
jaws, heat-seal 209

K
kaolin; see clay
KURARISTER™ 254

L
labels, labeling 333
- in-mold 333
lacquer 150
lactic acid 146
lake pigment 173
lamella(e) 61
laminar flow 161
lamination 186, 239, 245, 249, 254
- adhesive 249
- dry 249
- extrusion 245, 254
- hot melt 248
- thermal 251
- wet 249
land 226, 231
landfill 420
Langmuir-Henry’s law 361, 367
Langmuir’s law 90
lap seal 258
latex 193, 196, 198
LCB; see branching, long
chain
LCP; see liquid crystal
polymers
LDPE; see low density
polyethylene
lead; also see heavy
metals 166, 171–173
letter of no objection 407
letting down 160
lidstock 179, 195, 284
lifecycle assessment 445
lifecycle impact analysis
(LCIA) 446
lifecycle inventory analysis
(LCI) 446
light-weighting 294
linear line 228
linear low density poly-
ethylene (LLDPE) 3, 25,
39, 103, 108, 110, 138,
152, 165, 230, 248
liner 296
liquid crystal polymers
(LCP) 138, 3
LLDPE; see linear low
density polyethylene
load-deformation curve 78
lock-up seals 210
London forces 18
long chain branching (LCB)
39
loosefill 339
low density polyethylene
(LDPE) 3, 36, 37, 60, 81,
102, 152, 165, 176, 185,
241, 279, 294, 298, 436
lubricants 170

M
machine 287
machine direction 66
macromolecules 1, 9
macrosorting 431
Maddock mixer 218
magnesium oxide 174
magnesium silicate; see
talc
mandrel 301, 343
manifold 226
market, for plastics 4
mass transfer 355
master batch 160
Mayer rod 250
MBS 119
mechanical properties 78
medical devices 397
medical packaging 5,
206, 396
medium density polyethy-
lene (MDPE) 103
MEK 201
melt 213
melt flow 291
melt fracture 231
melting temperature 4,
20, 61, 63, 68, 72, 108,
115, 195, 198, 220, 226,
246, 247, 268, 292, 338
melt strength 247, 303
mesogenic monomer 139
metal deactivator 165
metallic pigment 173, 311
metallized film, metallizing
251, 265
metallocene polymers 3
metering section 213, 217
methacrylate-butadiene-
styrene (MBS) 119
methanalysis 433
methyl-ethyl ketone (MEK)
201
methyl isobutyl ketone
(MIBK) 201
methyl methacrylate 185
MIBK 201
mica 173
microbubbles 331
microcellular foam 332
microcrystalline cellulose
183
microsorting 432
migrants 356
migration 159, 355, 356,
401, 404, 406
Mirel® 148
miscibility 18
Mocon Oxtran 377
Model Toxics Law 411
modified atmosphere
135, 284, 356
modulus of elasticity 80
moisture sorption
isotherm; see sorption
isotherm
mold 213, 270, 281, 283,
300, 304, 340
– block 289
– cooling 283, 289
– female 271
– male 270
– negative 271
– parting line 289, 293,
332
– positive 270, 275
– release agent 171
molding; see thermo-
forming
molding 270
molecular architecture 23
molecular mass 9, 49, 55
molecular sieves 369
molecular weight 1, 9, 49, 50, 61, 116, 143, 152
- average 51
- critical 56
- distribution 39, 49, 50, 58, 358
- number average 51
- viscosity average 55
monomer 1, 10, 12, 23, 357
- bifunctional 24
- trifunctional 24
morphology 59, 61, 64, 77
multichannel die 239
multimanifold die 239
municipal solid waste (MSW) 420, 427
MWD; see molecular weight, distribution
MXD6 nylon 129, 180

N
nanoclay 182
nanocomposites 254
nanoscale additives 182
naphthalate dicarboxylate (NDC) 133
natural 201
NDA 397
neck-in 247
negative migration 357
Newtonian behavior 57
nipple height 282
nip roll 224
nips 235
nitrocellulose plastics 144
nonpolar bonds 16
norbornene 138
notched Izod impact strength 88
NPRC 438
nucleating agents 131, 175
nylon; also see polyamide 2, 3, 9, 19, 20, 47, 60, 127, 153, 176, 189, 252, 273, 400, 433

O
octene 110
olefin 101
oleic acid amide 170
opacity, opaque 67, 93, 95, 171, 175
open time 200
optical properties 93
- absorption 93
- reflection 93
- refraction 93
- scattering 93
oriented, orientation 19, 64, 65, 77, 83, 118, 129, 130, 132, 225, 228, 233, 304, 317, 318, 325, 375
- balanced 66, 225
- biaxial 65
- unbalanced 66, 225
- uniaxial 65, 375
OSHA 172
overcaps 299
oxidation 241, 246
oxygen scavenger 178, 330
ozone 241

P
PA; see polyamide packing, mold 287
pails 349
pallets 349
paneling 308, 326, 327
paracrystalline 68
parison 58, 303–305, 308, 310, 312, 313, 318, 324, 329
- programmed 303

parting line; see mold parting line
partition coefficient, K 357, 361, 405
PBA; see physical blowing agent
PBT; see polybutylene terephthalate
PC; see polycarbonate
PCL; see polycaprolactone
PCTFE; see polychlorotrifluoroethylene
pearlescent 173
PE; see polyethylene
EF 3
PEI; see polyethylene imine
pelletizing 433
PEN; see polyethylene naphthalate
pendulum impact test 88
permeability coefficient, P 90, 364, 378
permeability, determination of 377
- isostatic method 377
- quasi-isostatic method 377
permeability, permeation 20, 64, 353, 356, 363, 368, 382
permeance (R) 365
permeant 356, 405
peroxide 35, 163
pesticide 182
PET; see polyethylene terephthalate
PET, biobased 149
PETE; see polyethylene terephthalate
PETG 132
PHA 441
pharmaceutical packaging; see medical packaging
PHBV 3, 441
phenol-formaldehyde 3
phenol, hindered 164, 168
phenolics 150, 201
phosphite 165, 166, 168
photodegradable 410
photooxidation 167
phthalate plasticizers 416
phthalocyanines 172
physical blowing agents (PBA) 183
pigment 172, 173
– lake 173
– metallic 173
pinch 306
pinch rollers 228
pineapple mixing section 218
pinhole flex resistance 88
pin mixing section 218
plasma 253
plastic 336
plasticizer 119, 122, 143, 177, 374
plastics identification 154
plastics 3, 11
plastics coding system 413
polyacrylonitrile (PAN) 68, 137, 176, 317, 402
polyamide; also see nylon 9, 13, 45, 127, 253
polyaniline 140
polyarylate 132
poly(bisphenol-A carbonate) 134
polybutadiene 30, 73, 136, 154, 190
polybutene 154
polybutylene acrylate 14
polybutylene succinate (PBS) 149
polybutylene terephthalate 301
polycaprolactone 442
polycarbonate (PC) 3, 14, 20, 47, 60, 134
polychlorotrifluoroethylene (PCTFE) 135
polyester; also see PETG, polyethylene terephthalate, polyethylene naphthalate 3, 9, 13, 15, 20, 130, 194, 273
polyether 140
polyethylene acrylic acid 247
polyethylene furanoate (PEF) 149
polyethylene imine (PEI) 247
polyethylene naphthalate (PEN) 3, 133, 330
polyethylene (PE); also see high density polyethylene, linear low density polyethylene, low density polyethylene 2, 4, 11, 12, 17, 20, 25, 32, 59, 74, 96, 101, 159, 165, 170, 175, 176, 190, 195, 216, 223, 246, 265, 280, 306, 339, 368
– biobased 148, 149
polyethylene terephthalate (PET) 3, 11, 14, 20, 47, 60, 66, 121, 130, 176, 179, 189, 252, 253, 301, 303, 317, 320, 330, 414, 425, 433, 434
– biobased 149
polyhydroxyalkanoates (PHAs) 141, 147, 441
polyhydroxybutyrate (PHB) 147
polyhydroxybutyrate-valerate (PHBV) 147, 441
polyimide 3
polyisobutylene 237
polylactides (PLA) 3, 141, 145, 441
polymer 1, 9, 10, 23
– branched 24, 40
– cross-linked 24, 26, 40, 343
– linear 24, 40, 102
– nomenclature 13
polymerization 19, 23, 28, 36, 38, 41
– addition 31
– bulk 23
– chain-reaction 31
– condensation 31
– degree of 66
– emulsion 23
– fluidized bed 39
– gas phase 39
– ring-opening 146
– slurry 39
– solution 23, 39
– step-reaction 31, 60
– suspension 23
polymethylacrylate (PMA) 14, 369
polymethyl methacrylate (PMMA) 3, 272
polyoxyethylene 443
polyphenol 165
polypropylene (PP) 11, 20, 42, 59, 61, 62, 116, 143, 165, 176, 223, 225, 228, 252, 253, 294, 298, 301, 310, 438
- atactic 43
- isotactic 43
- syndiotactic 43
polysaccharide 196, 443
polystyrene (PS) 3, 11, 15, 20, 123, 167, 176, 253, 272, 294, 339, 417, 429, 438
- crystal 123
- foam 340
- high impact 123
polyterpenes 201
polytetrafluoroethylene (PTFE, Teflon) 3, 33, 135, 189
polythiophene 140
poly(trimethylene terephthalate) (PTT) 149
polyurethane 60, 140, 150, 194, 195, 197, 341, 343, 433
polyvinyl acetate (PVA) 3, 124, 197
polyvinyl alcohol (PVOH) 60, 124, 208, 443
polyvinyl chloride (PVC) 3, 11, 12, 18, 20, 66, 68, 118, 166, 167, 170, 176, 177, 182, 294, 416, 438
polyvinyl fluoride 60
polyvinylidene chloride (PVDC) 3, 15, 20, 33, 59, 121, 131, 167
pot life 201
pouches 66, 257, 258
- four-side seal 258
- pillow 258
- retort 260, 263
- stand-up 257, 260
- three-side seal 258
power law 57
preform 314, 318–320, 324
prepolymer 150
pressure 222
pressure forming; see thermoforming, pressure
pressure-sensitive adhesive 197
primary bonds 17
primers 201, 247
printing 91, 237, 241, 250, 301, 400, 412
prior-sanctioned 405
processing 11, 19, 26, 64, 77, 101, 102, 105, 139, 164, 173, 177
processing aids 399
processing, recyclables 430
producer responsibility; see extended producer responsibility
propagation 35, 41
proportional limit 80
PS; see polystyrene
PTFE; see polytetrafluoroethylene
PVA; see polyvinyl acetate
PVC; see polyvinylidene chloride
PVOH; see polyvinyl alcohol
PVOH/EVOH copolymer 254
pyrazolone 172
pyrolysis 433
quencher, excited state 165
quench(ing) 117, 128, 167, 228
quench tank 223
quinacridone 172
quiniphthalone 172
quinoline 172
quinone 179
R
radiation 26, 35, 268
- infrared 96, 269
- sterilization 6
range, adhesive 200
reactive adhesives 194
reactive extrusion 162
recycling 412, 425
- curbside 428
- drop off 429
- rates 415, 426
- recycled content 415, 420
regrind 26, 153, 213, 310
regulations 395
reinforcements 181
relaxation 64, 139, 224, 229
relaxation temperature 74
renewable 141
reuse 257, 260, 294
resilience 83, 120, 203, 294, 295, 297, 344
resistivity 95
retorting 126
roll stack 223
rotational; see rotational molding
rotational molding 299, 349
rubber 1, 3, 12, 196, 198
runner 289

S

sacks 5
SAN; see styrene-acrylonitrile
scalping 357
scavenger 168
SCB; see branching, short chain
Scotch tape 197
screen pack 219
screw 213
sealing 203
– band 204
– bar 203
– contact 206
– dielectric 206
– friction 205
– heat 58
– hot gas 206
– hot wire, knife 205
– impulse 204
– magnetic 206
– peel 210, 257
– radiant 206
– solvent 207
– strength 211
– thermal 203
– ultrasonic 205
secondary bonds 17
secondary carbon 165
secondary forces 17
segmental mobility 69, 73
self-seal adhesive 196
semicrystalline 68
separation for recycling 427
serum leaker 210
setting time 200
shear 57
shear cutting 279
shear stress 193
sheet 222, 267, 344
shelf life 353
shelf life estimation 384
shipping containers 349
shooting pot 288
shortness 200
short shot 291, 300
shrinkage 77, 243, 326
shrink bands 299
shrink film, wrap 238, 258
SIC; see stress-induced crystallization
side chain 25
side entry dies 229
side groups 25
sienna 174
sigma blade mixer 161
silica 169, 174, 175, 254
silicone 3, 9
silicon oxide coating 131, 252, 335
siloxanes 253
single screw extruder 217
sink mark 290
skin packaging 106, 278
skirt, tube 301
sleeve 301
slip agent 169, 242
slitting, film 235
soap, metallic 170
sodium bicarbonate 183, 341
sodium silicate 197
solids content 200
solid state properties 58
solid-stating 130
solid waste; see municipal solid waste
solubility 18, 20, 89, 95, 124, 360
solubility coefficient, S 90, 189, 355, 360, 364
solution 200
solvent 116, 121, 134, 183, 185, 201, 249, 432
solvent-borne adhesives 195
solventless adhesive lamination 249
sonic velocity 282
sorbates 357
sorption 89, 353, 355, 357, 368
sorption isotherm 374, 385
sorting 431
source reduction 415, 425
source separation 427
specialty resin 20
specular reflectance 94
spherulites 61
SPI 414
spider dies 229
spin welding 301
spiral channel dies 229
sprue 289, 301
sputtering 253
squeeze 331
stability testing 396
stabilizer; also see heat stabilizer, UV stabilizer, antioxidant 119, 195, 412
stalk 233
starch 196
starch-based plastics 145, 442
static electricity 176
stearate 170
Stefan-Boltzmann constant 269
stereochemistry 42, 59
stereoregularity 42, 63
sterilization 6, 76, 166
– ethylene oxide 136, 137
stiffness 73, 80
strain 58, 62, 80
strain hardening 152, 248, 325
strength 58, 181, 304, 318
- melt 131
- tensile 58, 66
stress 80
stress cracking 89
stress-induced crystallization (SIC) 318
stress relaxation 20, 83, 296, 320
stress-strain curve 79
stretch film, wrap 120, 237, 258, 429, 436
stretch ratio 66
stretch rod 318
stripper rings 292
styrene-acrylonitrile (SAN) 137, 342
styrene-butadiene 3, 30, 136, 141
styrene-methyl methacrylate 31
Styrofoam 340
substrate 185
sulfonation 336
surface tension 18, 91, 174, 188, 192, 193
surface treatment 189, 241, 245, 334
Surlyn™ 247
sustainability 141
swell 306
symmetry configurations 42
syndiotactic 44, 59, 63, 68, 111, 118

T
T_m; see melt(ing)
temperature
tack 200
tackifier 195, 201, 237
tactic, tacticity 42
take-off speed 225
talc 169, 174, 201, 341, 376
tamper-evident packaging 207, 299
tandem coating 248
tandem extrusion 342
tank melters 199
tear strength 87
Teflon; see polytetrafluoroethylene
Temperature Rising Elution Fractionation (TREF) 39
tensile modulus 81, 85
tensile strength 52, 81
tensile testing 211
tentering 225
termination 36
tertiary recycling 433
thermal conductivity 19, 76, 347
thermal expansion 19, 76, 354
thermal properties, polymers 68
thermodynamic equilibrium 358
thermoform-fill-seal 284
thermoform(ing) 5, 129, 206, 267, 273, 294, 349
- bubble (billow) 274
- drape 270
- foam 276
- in-line 277
- matched mold 276
- melt-to-mold 277
- plug-assist 273
- pressure 271
- scrapless 276
- SPPF 274
- twin sheet 278, 349
- vacuum 271
- vacuum snap-back 275
thermomechanical analysis (TMA) 77
thermoplastic 4, 12, 26, 294
thermoset 12, 26, 60, 150, 181
thickness normalized flow, N 365
threads 296
threshold of regulation 402, 406
tie layer 126, 241, 310
tin 166
titanium oxide 172, 173, 201, 254, 331, 376
torpedo 288
torque 296
toughness 27, 65, 67, 83
Toxics in Packaging Clearinghouse (TPCH) 412
TPE 140
TPO 141
TPU 141
transesterification 133
transmittance 95, 97
transparency, transparent 61
triboelectric series 95
trimming 307
triple bubble process 237
T-shaped die 226
tube(s) 301
tube wall swell 306
tubular reactor 37
twin screw extruder 161, 220
twin sheet; see thermoforming, twin sheet
two stage screw 220
Tyvek™ 206

U
ultimate elongation 81
ultimate strength 81
ultra low density polyethylene (ULDPE) 110
ultramarine pigment 174
unbalanced; see orientation
undercut 283, 292
unsaturated, unsaturation 32
urea 294, 301
urea formaldehyde 190
urethane; see polyurethane
USP 397
UV absorbers 167
UV stabilizer 168, 265
V
VA; see vinyl acetate
vacuum forming; see thermoforming
vacuum metallizing; see metallized film, metallizing
vacuum panels 327
vacuum snap-back; see thermoforming
van der Waals forces 17, 18
vapor pressure 369
VC; see vinyl chloride
VC/E 14
VC/E/MA 14
VCM 121
VC/VA 14
VC/VDC 14
VDC; see vinylidene chloride
vented extruder 220
vent holes 282, 293
venting 281, 293, 332
VFFS; see form-fill-seal
vibration 345
vinyl acetate (VA) 104
vinyl chloride 120
vinylidene chloride (VDC) 33, 121
vinyl polymers 15, 33, 41
viscoelastic 83
viscose 142
viscosity 18, 20, 52, 55, 56, 58, 106, 187, 191, 240, 248, 291, 312
viscous instability 240
VLDPE; see ultra low density polyethylene (ULDPE)
W
warping 292
water bath process 223
water-borne adhesives 196
– natural 196
– synthetic 196
water-soluble polymers; also see polyvinyl alcohol 443
water vapor transmission rate (WVTR) 103, 124, 134, 148, 365, 376, 381
wavelength 96
wave number 96
wax 195, 207
web(stock) 257
weld line 290
wet bonding 249
wetting, wettability 91, 174, 187, 193
winding film, winder 224, 235
work hardening 273
wraps 258
WVTR; see water vapor transmission rate
Y
yield 242
yield point 58, 81
yield strength 81
Young’s modulus 80
Z
zeolite 169
zinc compounds 167, 174, 201