Energy in Plastics Technology

Theory and Practice

USD 229.99 (Print)

incl. taxes, plus possibly shipping costs

published
€199.99 (Print)

incl. taxes, plus possibly shipping costs

published
€199.99 (PDF)

published

Description
Energy in Plastics Technology
“Energy in Plastics Technology” provides, unlike any other book, the necessary fundamentals for dealing with thermotechnical issues in the processing of plastics, leading to efficient, robust, reliable, economical, and environmentally friendly processes for high-quality products. The following four areas are addressed:

- Methodical application of the essential fundamentals to practical problems. The focus is on the formulation of energy balances.
- Special emphasis is placed on the understanding of the first and second laws of thermodynamics, with their manifold implications.
- Access to key advanced technical literature, which can be highly theoretical, and forms the basis for advanced simulation methods, is provided.
- Analytical approaches for modeling processes (as opposed to numerical simulation methods) are covered, so that the influence of the essential process parameters can be better recognized, and correct results in terms of order of magnitude are obtained with reasonable effort.

These simplified considerations provide a valuable support for the preparation of experiments and numerical simulations and their critical evaluation. The fundamentals provided are applied - in exemplary calculation examples - to problems relevant to practice in the most important processing and forming methods.

The book is aimed at engineers and students working in plastics technology as well as technicians and plastics technologists.

Contents:
Part 1 – Introductory Fundamentals: Introduction, Material Behavior of Plastics, Thermodynamics, Fluid Mechanics I, Heat Transfer
Part 2 – Advanced Fundamentals: Steady-State Heat Conduction, Transient Heat Conduction, Thermodynamics of Air-Drying, Fluid Mechanics II, Recycling of Plastics
Part 3 – Practical Examples
Energy in Plastics Technology
“Energy in Plastics Technology” provides, unlike any other book, the necessary fundamentals for dealing with thermotechnical issues in the processing of plastics, leading to efficient, robust, reliable, economical, and environmentally friendly processes for high-quality products. The following four areas are addressed:

- Methodical application of the essential fundamentals to practical problems. The focus is on the formulation of energy balances.
- Special emphasis is placed on the understanding of the first and second laws of thermodynamics, with their manifold implications.
- Access to key advanced technical literature, which can be highly theoretical, and forms the basis for advanced simulation methods, is provided.
- Analytical approaches for modeling processes (as opposed to numerical simulation methods) are covered, so that the influence of the essential process parameters can be better recognized, and correct results in terms of order of magnitude are obtained with reasonable effort.

These simplified considerations provide a valuable support for the preparation of experiments and numerical simulations and their critical evaluation. The fundamentals provided are applied - in exemplary calculation examples - to problems relevant to practice in the most important processing and forming methods.

The book is aimed at engineers and students working in plastics technology as well as technicians and plastics technologists.

Contents:
Part 1 – Introductory Fundamentals: Introduction, Material Behavior of Plastics, Thermodynamics, Fluid Mechanics I, Heat Transfer
Part 2 – Advanced Fundamentals: Steady-State Heat Conduction, Transient Heat Conduction, Thermodynamics of Air-Drying, Fluid Mechanics II, Recycling of Plastics
Part 3 – Practical Examples
Customer evaluation for "Energy in Plastics Technology"
Write an evaluation
Evaluations will be activated after verification.

The fields marked with * are required.

Author Info

Prof. Dr. Wolfgang Kaiser has established a systematic education and training in plastics technology for engineers in Switzerland, at the University of Applied Sciences and Arts Northwestern Switzerland and at the Department of Materials Science at ETH Zurich. He was jointly responsible for the establishment of the Plastics Training and Technology Center (KATZ) in Aarau and was its managing director for many years. He is the author and co-author of numerous scientific publications in the field of plastics technology.
Prof. Dr. Willy Schlachter was Vice-Director and later Director of Technology at the University of Applied Sciences Aargau. After the merger to form the University of Applied Sciences Northwestern Switzerland, he took over the management of the development of interdisciplinary research and is now emeritus.He was previously Head of Gas Turbine Development at Sulzer in Winterthur, Head of Department in the Thermal Machines Laboratory at BBC in Baden, Mandate Technology in the Power Plant Division of BBC and, after the merger with ASEA, at ABB.

Prof. Dr. Wolfgang Kaiser has established a systematic education and training in plastics technology for engineers in Switzerland, at the University of Applied Sciences and Arts Northwestern Switzerland and at the Department of Materials Science at ETH Zurich. He was jointly responsible for the establishment of the Plastics Training and Technology Center (KATZ) in Aarau and was its managing director for many years. He is the author and co-author of numerous scientific publications in the field of plastics technology.
Prof. Dr. Willy Schlachter was Vice-Director and later Director of Technology at the University of Applied Sciences Aargau. After the merger to form the University of Applied Sciences Northwestern Switzerland, he took over the management of the development of interdisciplinary research and is now emeritus.He was previously Head of Gas Turbine Development at Sulzer in Winterthur, Head of Department in the Thermal Machines Laboratory at BBC in Baden, Mandate Technology in the Power Plant Division of BBC and, after the merger with ASEA, at ABB.

Review

"Nun gibt es das wertvolle, 2019 erstmals erschienene Werk auch in englischer Sprache. Es ist aber weit mehr als eine Übersetzung. Die beiden Autoren, als Kunststoffspezialist und Thermodynamiker bekannt, haben für diese Neuausgabe den Inhalt gründlich überarbeitet und angereichert und, wo sinnvoll, auch umgestellt. Unverändert ist das überzeugende Konzept des Buches. [...] Das ganze Buch ist durchdrungen von der Leitidee, die Ansprüche an die unverzichtbare Theorie mit den Bedürfnissen der Praktiker zu verbinden. Da dies hervorragend gelungen ist, eignet es sich bestens für Anwender, Lehrende und Lernende, die sich in der Kunststofftechnik mit Energiefragen zu befassen haben oder sich in die wichtige Thematik einarbeiten möchten." Prof. Johannes Kunz, kunststoffXtra.com, 25.03.2024


"Nun gibt es das wertvolle, 2019 erstmals erschienene Werk auch in englischer Sprache. Es ist aber weit mehr als eine Übersetzung. Die beiden Autoren, als Kunststoffspezialist und Thermodynamiker bekannt, haben für diese Neuausgabe den Inhalt gründlich überarbeitet und angereichert und, wo sinnvoll, auch umgestellt. Unverändert ist das überzeugende Konzept des Buches. [...] Das ganze Buch ist durchdrungen von der Leitidee, die Ansprüche an die unverzichtbare Theorie mit den Bedürfnissen der Praktiker zu verbinden. Da dies hervorragend gelungen ist, eignet es sich bestens für Anwender, Lehrende und Lernende, die sich in der Kunststofftechnik mit Energiefragen zu befassen haben oder sich in die wichtige Thematik einarbeiten möchten." Prof. Johannes Kunz, kunststoffXtra.com, 25.03.2024


Similar products Customers also viewed
Similar products
Customers also viewed